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Abstract 

 

Relational Database Management Systems (RDBMSs) are advanced software packages 

responsible for providing storage and access to relational databases; data stores in which 

data is arranged in schemas, which are interlinked tables, each table constituted of 

columns and rows, and each intersection containing a data point. 

This project considers the impact that the ever-increasing demand in data volume, 

velocity and variety, combined with changes in query methodology and uptake of object-

relational mapping frameworks driven by modern object-oriented application programming 

practices, have had upon the effectiveness of the relational database query optimiser; in 

particular, this research examines the emergence of object-relational impedance mismatch 

and the corresponding effect on query processing efficiency within the database engine.   

Firstly, this research reconsiders the query parsing and caching mechanisms within current 

RDBMSs and notes their deficiencies in query plan re-use.  An alternative mechanism for 

query representation is presented, representing queries as multidimensional structures 

which are computable, comparable, and reducible to hashes.  It is shown how this 

representation can be used to improve plan re-use and increase the efficiency of the query 

optimiser.   

Secondly, new multidimensional representations in real-time are demonstrated using 

weighted k-means clustering with self-adjusting weights and k to predict superior sub-

schema selection, including application of queries to an alternative sub-schema of data, 

reducing resource consumption and improving query execution times.  This is validated 

against a real data set and performance is tested at scale.  It was found that use of KNN 

provided the relational database query optimiser with an increasing degree of accuracy 

and reliability in query classification, with an improvement in query execution time 

demonstrated at scale, against lifelike database queries, ranging from 6.2% to 20.6%.    

Finally, a novel method of dynamic schema redefinition is presented.  This process defines, 

creates and destroys sub-schemas, maps queries to their sub-schema variants, and keeps 

track of performance metrics, self-adjusting the current library of alternative schema 

representations available.  This is defined theoretically against the backdrop of the 

relational algebra and ZFC axiomatic set theory. 
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Chapter 1:  Research Introduction 

 

1.1 Introduction 

 

Relational Database Management Systems (henceforth RDBMSs) manage storage and access to 

data using the relational model, accessible through Structured Query Language (SQL) both directly 

by users and automatically via application calls.  Such systems underpin a large majority of the 

everyday IT systems used across the world [1], from physical barrier controls to e-commerce 

websites, stock market systems and social media.  At over half a century old [2], the relational 

model has stood the test of time and has spawned a diverse range of powerful toolsets espoused by 

keystone software suppliers; Microsoft, Oracle and IBM all have contemporary flagship RDBMS 

products [3, 4, 5] that have a rich history, with more recent inroads made with ‘Database-as-a-

Service’ (DaaS) products from Amazon and developments in both native and DaaS RDBMS 

platforms from the open-source community.  However, the relational model does not cater for every 

usage scenario, and several classes of performance issues are endemic to the model, as evidenced 

throughout the academic literature [6, 7] and through observations and improvements suggested by 

the technical practitioner community [8, 9].   

Chapters 2 and 3 explore the literature and show primary research conducted to replicate some 

well-known database query performance anti-patterns, particularly those investigated by Ireland et 

al. [6] and Karwin [10].  Many of these issues remain current and merit further research, 

particularly in the efficiency of query parsing, caching and binding.  The principal research 

contributions explore these issues, replicating and exploring poor performance characteristics in an 

experimental setting, and present a novel, multi-faceted solution framework that represents 

advances in both the information theory underpinning the representation of relational queries and 

the pragmatic delivery of a new methodology for query handling within the RDBMS query engine.  

This research aims to both showcase the theoretical development of the novel ideas that underpin 

this methodology and demonstrate how the framework can be implemented within an RDBMS. 

 

1.2 Research M otivation 

 

The role of information has undergone a radical transformation since the inception of the database 

model in 1970, both in the context of technological development of information systems and as part 

of wider cultural changes in the way that information is produced, stored, and consumed.  The 

development of web applications, the advent of social media and the increase in development and 

proliferation of online appliances (known colloquially as the ‘Internet of Things’[11]) in a variety of 
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contexts, such as enabling so-called ‘smart cities’ [12] or powering developments in healthcare [13, 

14], together with sustained improvements in computational capability, have resulted in what has 

been described variously as a ‘data deluge’[15]; the ‘information revolution’ [16] and the ‘global 

information age’ [17].  However, as data is generated, it must be stored, and must then be kept 

confidential; the integrity of the data must be preserved; and it must be available, ready to be 

accessed.  This CIA triad forms the core tasks of the RDBMS.  Ensuring these challenges are met is 

increasingly difficult in a rapidly changing world where the use and generation of data is 

continually growing. 

 

Traditionally, the RDBMS has been used to store such data and provide this ‘CIA guarantee’, on 

the premise that the data is structurally repeatable, that it conforms to a formal data schema.  

This remains the case for a great deal of enterprise data; of the top 10 databases in the world, 

ranked by popularity, 7 are relational platforms [1].  It is notable that one of the world’s most 

popular social networks is constructed on a relational database product and in 2011 was handling 

over 60 million SQL queries per second [8]. While there are valid use cases for non-relational 

database systems, such as the management of unstructured or semi-structured data, it is arguable 

that the widespread implementation of RDBMSs in diverse contexts means relational database 

performance remains a current concern and NoSQL solutions, while suitable for some purposes, 

cannot provide a superior fit between the underpinnings of set-theoretic relational algebra and 

implementations of the same than the relational model paradigm. 

 

Database schemas are noted for their invariability [18].  Having been conceived and the standards 

developed from 1970 onwards [2][19][20], it is symptomatic of the static nature of computer 

programming at the time that the relational model was designed to integrate with fixed application 

models.  However, technical and cultural patterns in modern application development are designed 

with adaptability in mind, a major milestone of which was the publication of the ‘Agile Manifesto’ 

[21] in 2001 and led to a shift away from application development methodologies that had ‘Big 

Design Up Front’ (BDUF) principles embedded.  This included to some extent the relational model, 

built to interface with these kinds of systems, and solutions optimised for semi-structured data built 

on the BASE rather than the ACID principles became popular [22, 23].  As such, both technical 

and cultural splits developed between the new object-oriented, adaptable application development 

approaches and the static relational model.  One artefact of this technical split is known as the 

object-relational impedance mismatch problem [6, 24], necessitating the use of object-relational 

mapping (ORM) tools to reconcile class objects to sets, while the cultural split has resulted in 

various speculations across social, news and academic media [7, 25] about the role of relational 

databases in future applications and helped fuel the rise of alternative database platforms that 
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support unstructured and semi-structured data.   

 

With this context described, the motivation for this research is to help solve, or at least mitigate, 

some of these mismatch and subsequent performance issues by introducing dynamism – defined here 

as the ability for a RDBMS to respond favourably to a constantly-changing environment - into the 

relational model, as agility was introduced into software development practices.  To do so, this 

research focuses on novel theoretical developments and demonstrable practical methods which 

enable the database to respond to ever-changing input queries to provide a superior data retrieval 

service which is better placed to serve the management of ever-increasing volumes of data.   

 

1.4 Research Questions, Aims and Objectives 

 

This section lists the broad research questions and the central aims of this research project; and 

details several objectives that support the aims and look to answer the research questions.  These 

are revisited in Chapter 11, where the findings are compared against the stated questions, aims and 

objectives, and the success (or otherwise) of the project is evaluated. 

 

1.4.1 Research questions 

 

a. As the demands of data processing have evolved from closed systems with known data 

structures driven by fixed schemas to open, unstructured systems driven by the 

applications, what disadvantages can be identified with the current object-relational 

database model given this evolution, and how can these be overcome? 

 

b. Can a new theory for query representation be developed as an alternative to representing 

queries as semantic objects?  Is there an accompanying viable practical approach to 

implementing this new theory to overcome the disadvantages of storing and caching queries 

as non-comparable semantic objects, and can this be used to improve the parsing and pre-

optimisation stages of the query optimiser? 

 

c. Can other approaches from alternative computational disciplines, such as machine learning, 

be applied to extend the current object-relational database storage and management 

methodologies, creating a responsive model that learns from system inputs to optimise 

system outputs? 

 

d. Can schema representation and usage in RDBMS systems be adjusted to incorporate more 

of the theoretical capabilities of axiomatic set theory, particularly the Zermelo-Fraenkel 
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axiom of the schema of separation?  Does such an approach work theoretically for query 

binding, and can such an approach be implemented in practice? 

 

1.4.2 Research aims 

 

a. To research the effects of object-relational impedance mismatch and associated factors, 

such as the impacts of big data that affect relational database query optimisation 

performance, engaging with the industry practitioner community to research the real-life 

performance consequences of queries generated from non-traditional sources, including 

ORM frameworks, upon relational databases. 

 

b. To identify and develop a novel solution to any adverse performance issues arising from 

these consequences, testing and validating the solution, and to establish an overarching 

design framework based upon this solution, detailed at both the theoretical and 

implementational level, to form the foundation of future work in developing the theoretical 

bases of this solution further. 

 

The following research objectives are defined to help achieve the aims. 

 

1.4.3 Research objectives 

 

 

a. To provide a summary review of the key technical concepts for the topics of this research, 

and to conduct a topical critical literature review of performance optimisation literature in 

the relational field together with related topics. 

 

b. That the literature review in (a) encompasses the evolution of data in information systems; 

how data has been stored, categorised and measured, with emphasis on the trends and 

future developments required from data management frameworks to support these 

expectations. 

 

c. To investigate and identify weaknesses in current database design and query handling 

approaches, with particular emphasis on query representation and schema design. 

 

d. To validate any gaps identified in database performance optimisation research by collecting 

and analysing qualitative subjective data from industrial practitioners and from academic 
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professionals. 

 

e. To identify suitable approaches to developing a conceptual solution to address the 

identified weaknesses, generalising this solution into a theoretical framework to augment 

current database storage designs, access methods, management processes and structural 

conventions, suitable for implementation across platforms. 

 

f. To investigate if alternative computational optimisation tools and approaches, such as 

machine learning algorithms, can be used within a solution to the identified performance 

optimisation problems; if so, to present such a solution design and implementation. 

 

g. To evaluate the contributions of this research and propose new directions for further work 

based on the outcomes that were achieved. 

 

 

1.4 Research Approach  

 

1.4.1 Research philosophy 

 

The focus of the research is on exploring the methodologies and potential performance benefits of a 

new dynamism in database performance optimisation.  To conduct this research, it was necessary 

to choose a research philosophy which reflected the investigation of untested ideas, and which 

would be the most effective in answering the research questions, and which allowed for varying 

modes of enquiry with a selection of mixed methods. 

 

To this end, the philosophical stance of the research is based on pragmatism; this is an approach in 

which claims to knowledge are made based on actions, situations and consequences [26] rather than 

as a result solely of strict post-positivistic scientific enquiry strategies, or interpretivist socially-

oriented approaches, although the philosophy of pragmatism may encompass both of these.  

Pragmatism is focused on developing the solutions to problems rather than concentrating on the 

methods that are used [27], and as such is suited well to a mixed-methods research strategy.   

 

Peirce, cited in Ormerod [28] is credited as one of the principal proponents of pragmatism, and 

defines it as a ‘philosophy of meaning’, with Ormerod further commenting that utilitarianism has a 

strong bearing on the meaning of pragmatism.  Little mention is made in the literature of 

pragmatism about specific strategies of inquiry, and pragmatism as an approach appears to be 
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suited to research where any suitable strategy of inquiry can be considered valid; a disconnection is 

made from an absolute version of the truth, and the interpretation of truth at different points in 

time – or, as Melles [29] puts it, ‘… individual action and experience in the world [is] the most 

realistic basis for decision-making’.   

 

Our solution, while constructed in such a way as to be platform-independent, and with theoretical, 

set-theoretic and scientific design underpinnings, may be used in the future as a basis for 

implementation of the ideas within in existing or new RDBMS systems.  Finding and testing these 

ideas using a pragmatic, ‘what works’ approach may then be superior to other research philosophies 

– for example, the interpretivist approaches associated with social sciences [30, 31], where opinion 

and narrative are given greater prominence than quantitative empirical testing, may be of limited 

use when deciding which design approaches provide the most quantitative utility.   

 

Misak [32] argues that under the pragmatic model, beliefs are true for an individual, and the 

definition of truth is variable according to what ‘needs’ to be believed at the time.  This is similar 

to the importance placed on individuals ‘lived’ experiences in other disciplines.  ‘Individual’ could 

be extended to ‘system’, and this viewpoint can be useful: if this research were to make 

suppositions, or hypotheses based not just on logical empiricism but based on the humanistic 

outputs, or relative truths, of the qualitative research, then a richer and more flexible version of the 

solution might emerge.  To illustrate this point, historical research into schema scalability strategies 

resulted in the concept of normalisation ([33][34]).  This is a form of logical empiricism, where the 

concept can be proved mathematically, and the benefits tested scientifically.  Schema normalisation 

was suited to environments where the variety and structure of information queries was a known 

quantity (the ‘absolute truth’) but failed to recognise two important factors – the performance 

costs associated with a decentralised schema [9], and the human difficulty in, for example, 

identifying functional dependencies that are associated with designing such schemas – Lee [35] 

noted that ‘...the determination of appropriate normal forms frustrates many systems analysts.’  

This discord is evident in the design choices of several current enterprise software packages and has 

been reflected in comments from our interview participants. 

 

Arguably then, the mathematical and scientific rigour of the normalisation model fell afoul of the 

dynamic and flexible environmental contexts in which these normalised schemas were to be used, 

evidenced by the increasing variety of alternative structural approaches [22, 23] to relational 

databases emerging today.   

 

Floridi [36] defines ‘pragmatic information’ as how much information is carried from informer to 

recipient, in a specific ‘belief state’, in a specific operational environment.  This could be a 
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considered a comparative philosophical definition of an information system based on interactions 

(or transactions) such as an RDBMS; a pragmatic approach to the research, then, recognising that 

truth depends so much on the context of the application and the priorities of the participants (both 

human and machine), would appear to be an appropriate research philosophy to investigate a 

pragmatic information system. 

 

1.4.2 M ethodological choice 

 

With a mixed-methods approach underpinned by a pragmatic research philosophy, Creswell and 

Plano Clark [37] argue that the use of both qualitative and quantitative approaches used together 

in the correct fashion can yield a stronger study than either alone.  The mixed-methods approach 

allows for the human outputs of conversations brought from open-ended interviews to be combined 

with quantifiable survey outputs from a population of database professionals to identify the 

primary database performance difficulties experienced in the field; these insights can be used as 

inputs to the literature review, which can then yield, through an iterative, inductive reasoned 

approach of triangulation, in a detailed description of advances in the various academic disciplines 

which contribute to the design (for example database performance tuning; functional dependency 

identification; sort-merge algorithms; machine learning techniques, for automatic query 

classification and so on).  Further, in designing and testing the functions which comprise the 

elements of our solution (such as dynamic schema redefinition), the mixed-methods approach allows 

for the integration of formalised quantitative testing techniques to validate the outcomes [38]. 

Moving from the outside to the inside of the Saunders’ et al ‘research onion’ [39], the following 

paths, shown in Fig. 1, have been identified to classify the chosen research approaches, each 

marked with a black rounded rectangle. 
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Fig. 1.1:  The ‘Research Onion’, adapted from Saunders et al. (2008) [39],  

with annotations (copyright as shown). 

 

An inductive approach has been chosen for this research.  Inductive approaches focus on drawing 

out the general theory from singular examples, whereas deductive approaches draw singular 

examples from the general theory.  An approach loosely modelled on Glaserian grounded theory is 

used for the literature review and according to Lapan [40], it is an inductive reasoning method that 

fits well with qualitative research.  Within grounded theory, the Glaserian approach [41] is held to 

be the most inductive, with the focus being on the integration of findings and letting theory emerge 

from the data.  This also applies to the quantitative testing; where a theory can be tested, it is the 

singular hypotheses that are confirmed or otherwise by individual experiments that will shape the 

outcome (i.e., the success or failure of the aspect of the solution under test). 

 

Referring again to Saunders [39], both experiments and surveys have been highlighted, although 

interviews are also used, and a cross-sectional approach taken – this is to say that research is on 

the specific, rather than the general case, due to the breadth of the relational model and the range 
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of testing that could be carried out, once again fitting with an inductive methodology.   

 

Creswell describes six mixed-method design strategies – the ‘sequential exploratory’; the ‘sequential 

explanatory’; the ‘sequential transformative’; ‘concurrent triangulation’; ‘concurrent nested’ and 

‘concurrent transformative’ [37].  The category which best describes this research is the sequential 

exploratory, where qualitative data collection is completed first followed by quantitative experiment 

design and data collection to explore an idea.   

 

Finally, the epistemological perspectives are both subjective (for the qualitative research) and 

objective (for the quantitative research), although it must be noted that a certain rigour is present 

in the literature review research method that is drawn from an objective, semi-formal design, as 

detailed in the next section. 

 

 

1.4.3 Research plan 

 

The research plan is structured as shown in Fig. 1.2.   

 

The plan is split into three phases.  Phase 1 focuses on project planning, carrying out secondary 

research and planning and executing the initial qualitative research and problem validation.  Phase 

2 looks to define the solution from the outcomes of Phase 1 and in doing so, follows a loose iterative 

software development methodology, insofar as this can apply to a single participant.  The 

functionality is designed and documented, and in Phase 3, experimental testing and validation 

takes place, including external validation with academic and industry experts.   

 

Initially, the plan began by researching terms at the highest level of abstraction given the problem 

domain; database performance optimisation research, with an emphasis on recent developments, 

with seed terms informed by the author’s industry background.  An approach based on Glaserian 

grounded theory was then used to search the literature, analyse the findings and extrapolate further 

areas of potential research, by working from general topics, noting the subtopics and findings that 

emerged and recursively searching and aggregating sources and findings based on the results. 

 

Grounded theory is normally used in social sciences, but is a suitable research method when 

analysing large, unstructured data inputs such as published literature to find insights regardless of 

specialty.  Grounded theory is a technique for methodologically determining linkages between 

different data sources, categorising and dissecting the data to find new categorisations and research 

leads through codification of concepts and comparative analysis.  As an inductive reasoning method 

[40, 41], it fits with the general qualitative research philosophy outlined.  To use it effectively, 
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starting with a general research concept such as database performance optimisation without looking 

to answer specific questions means the domain remains broad and new insights can emerge.  Once a 

broad and deep study has been conducted, and findings codified with memos outlining key ideas, 

these can be brought together to form clear conclusions and bring forth theory – for this research, 

these are indications on which optimisation methods have been popular or successful, and more 

crucially where gaps in performance optimisation theory remain.   

 

Since the literature review is interaction only with published works and not with human 

participants, a more objective view can be taken when assessing sources and to this end, a 

quantitative evaluation method has been used, making this approach quasi-grounded theory, rather 

than a full implementation of the technique. 

 

Database performance optimisation is not the only area which was targeted in the literature review.  

Additionally, other topics became apparent, particularly when considering other cross-disciplinary 

techniques.  The literature review was expanded beyond the initial scope to include related different 

topics.  In Table 1.3, some potential broad subjects for literature review are related to the research 

questions.  These were eventually refined into the topics that head each subsection in Chapters 2 

and 3. 
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Fig. 1.2:  Three-Phase Research Plan 
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Other approaches were possible for the literature review.  One of the criticisms noted [42] is that 

some vital topics to that study are excluded as they are separate from the interconnected streams 

of topics identified through grounded theory, and it was necessary to add more ‘seed topics’ (see 

diagram above) to establish a broad view.  Additionally, with increased review into secondary and 

tertiary references, the scope of material necessarily extended backwards in time, meaning topics 

quickly became outdated or irrelevant to the primary study.   

 

 

Table 1.3:  A sample of topics related to Research Questions A through D 

 

Research Question Topics 

a, b, c, d Database performance optimisation. 

A 

Data evolution; data culture; big data; unstructured data; Agile; 

object-oriented programming; Internet of Things; application 

design methodologies; data warehousing; distributed data. 

b, d 

Graph theory; multi-dimensional information representation; 

Hilbert spaces; matrix theory; linear algebra; machine learning 

techniques; code refactoring; learning algorithms; artificial 

intelligence. 

C 

Measuring data; 3 ‘V’s; domains; statistical modelling; planes / 

complex planes; data classification; pattern matching; data 

aggregation; data types. 

 

 

Examining current research only helps avoid the latter point, but also excludes certain vital 

necessities – such, as in this case, vital work on set-theoretic constructs, like domains [43].  Fig. 1.4 

illustrates the approach used to discover, assess, analyse, codify and extract meaning from research 

literature using the grounded theory approach. 
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Fig. 1.4:  The grounded theory-based approach to literature review 

 

 

1.4.4 Primary qualitative research strategy 

 

One purpose of the secondary research is to discover the limitations and weaknesses in current 

database optimisation research, implementation methods and best practices.  While a significant 

amount was discovered from examining sources such as academic journals and technical 

documentation, much of the knowledge pertaining to efficient database performance tuning 

practices is latent and highly dependent on factors such as environment, experience of the 

professional, corporate policies, personality, role, software version and business context.   

 

For this reason, making assumptions about the limitations of performance optimisation would be 

best augmented by consulting established professionals to gather more detail on alternative 

viewpoints to the problem which will help to establish the scope and priorities for the solution.  

This is an example of the mixed-methods approach to the research, where using interpretivism (as 

part of a pragmatic approach) alongside a more structured quantified positivist style can result in a 

survey where answers can both be counted and interpreted to form conclusions.   

 

The surveys took the form of a mixture of multiple-choice questions, and open survey questions.   

The target audience for the first survey were professionals engaged in active positions requiring 

interaction with database management systems.  These included developers, database 

administrators, analysts, academics, IT managers, application support specialists, architects and so 
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on.  Due to the delivery medium (online, group targeting) it was not possible to strictly filter out 

other professions; however, the distribution of the survey was targeted to those communities most 

likely to have members engaged in these professions and their primary occupations were captured 

in the survey, so that non-qualifying participants can be excluded in analysis. 

 

As this is an inductive method, no prior hypotheses are assumed. To facilitate this, the questions 

were designed to be balanced and without lead or bias.  The first survey was split into three 

sections – 

 

• The profiling section, where the respondents were invited to provide some background 

information.  Personally-sensitive information such as gender or race were irrelevant for the 

survey analysis and so do not need to be recorded, but data points such as number of years 

of experience and job role were captured here.  These responses also qualified the 

respondents to answer the main questions.  Given the desired target audience of regular 

database users, developers, administrators etc., an early exit point was built into the design 

in case respondents do not have sufficient regular experience to assure the desired 

competency and experience in the field. 

 

• The next section was focused on the processes, procedures, tools and frameworks that the 

respondents were currently or recently using.  This formed a snapshot of their current 

opinions and methodologies and these questions were designed to provide information to 

help answer the first research question. 

 

• The final section, where questions were focused on potential improvements that the 

respondents have planned or would like to see.  This section looked at what is possible in 

the area, and what changes the respondents would make.  The outputs of these questions 

helped inform the design outcomes specified by the remaining research questions. 

 

To build upon the outcomes of the questionnaire, three semi-structured interviews with leading 

database professionals were undertaken to collect opinions on both the current performance tuning 

challenges and future directions for database performance research and implementations.  These 

interviews produced insights which complemented the outcomes of the literature review and 

survey(s) to determine the best possible design paradigms, and these outcomes are presented in 

Chapter 4. 

 

In keeping with the inductive reasoning approach, these interviews were narrative, in-depth 

interviews conducted on loose lines of enquiry.  Taylor et al [44] note that this style of interview is, 
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‘… modelled after a conversation between equals rather than a formal question-and-answer 

exchange.’  This is a style where rapport is established between the participants and non-directed 

conversation occurs to bring out opinions and other data for later analysis. 

 

Interview audio was recorded in full and transcribed for analysis.  Information analysis was 

conducted through extraction of opinions and ideas expressed by the interviewees using first-pass 

sentiment analysis with the software package NVivo and analysis and final codification by hand of 

the findings, and the categorisation of these, alongside the survey output, into short conclusions 

and directives that later informed the solution. 

 

 

1.4.5 Primary quantitative research strategy 

 

The research strategy first focused on establishing the scope of the problem in the field of database 

query representation, parsing and re-use strategies, doing so using secondary research in the form of 

literature review and primary research through problem validation with industry professionals and 

academic experts.  

 

Beyond this initial strategy, the research branched into the quantitative – establishing a base 

design constructed from our findings and establishing an initial proof-of-concept.  This proof-of-

concept was designed to test several of the key tenets of any potential solution for feasibility, and 

to help answer research objectives (e) and (f), before proceeding to develop a full theoretical and 

practical solution: 

 

It was established through the qualitative research that a new approach was needed to address the 

following findings; this informed our initial high-level solution design using a top-down design 

approach in a spiral methodology based on the following findings from the qualitative research: 

 

• That external application usage patterns have changed, particularly with the advent of 

ORMs, resulting in changes to query patterns that are not well served by the static nature 

of current query parsing and recaching methodologies in RDBMS systems. 

 

• That a more efficient approach is desirable that improves query re-use and overcomes 

caching issues. 
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• That there is an opportunity to use certain elements of set theory to introduce dynamic 

schema creation and selection into RDBMS platforms as an additional strategy to help 

address poor query handling. 

 

An initial sample data set from the public domain was then identified that could be split into sub-

schemas; SQL queries to address this data set were created; and an initial implementation for the 

query representation and schema selection elements of our high-level design was created, drafting 

these both in theory and implementing in practice, using PostgreSQL as the RDBMS and Python 

2.7 for the new feature code.  Test harnesses were built and several hundred tests executed, with 

the results recorded for later quantitative analysis.   

 

The following methodological choices were made:  

 

• Staged, modularised development using a spiral methodology was chosen as the most apt 

approach to the solution under investigation.  In this methodology, requirements gathering, 

design, implementation, testing and deployment are arranged in concentric spirals with 

each journey around the spiral encompassing more requirements and consequent features in 

the final artefact.  This methodology can be managed by a single researcher and any 

definition of ‘done’ can be defined, however it has the disadvantage that the single 

researcher will by necessity need to fulfil all roles in the spiral.   

 

Fig. 1.5 illustrates the original concept of the spiral software development methodology as 

developed by Boehm [45].  Although some phases such as risk analysis are not relevant to this 

investigation, the overall concept of moving between 4 key phases and developing an increasingly 

complex artefact based on frequent review remains. 
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Fig. 1.5:  The original spiral methodology, reproduced from Boehm, 1988 [45, pp.64].   

 

The following methodologies were considered and rejected: 

 

o Waterfall (BDUF) methodology:  Since the aim is to establish the feasibility, 

through design and experimentation, of a pragmatic solution to the research 

problem, a waterfall methodology would provide too much rigidity between 

requirements gathering, solution architecture, implementation and testing.  Since 

trial and error is required, an iterative approach is more appropriate. 

 

o Agile methodology:  This methodology is better suited to teams where the goals 

can be split into a series of tasks, grouped into sprints and allocated to individuals 

or small teams.  Each task is tangible and has a clearly defined definition of ‘done’.  

This methodology was rejected (and variants of it, including XP and Scrum) as 

over-engineered for the purposes of a project involving a single author. 

 

o V-model methodology:  This model relies on the pairing of planning and 

development tasks with testing and deployment tasks in a series of roundabout 

interactions to ensure that requirements are validated before design proceeds; that 

design is verified before implementation proceeds; that implementation is tested 

before deployment proceeds.  This model relies on some division between the 
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development and the testing; some pre-determined knowledge of the eventual 

design, in the style of waterfall, is required, and this approach often involves 

multiple teams.  This approach was rejected in favour of the spiral methodology 

which enables iterative solution development without fixed definitions of the final 

artefacts. 

 

The test harnesses, test definition and execution of the initial proof-of-concept was conducted using 

a mixture of quantitative approaches.  For the initial proof-of-concept, the scientific method was 

used, with hypotheses defined and outcomes compared against the hypotheses.  For later 

development and testing, a more exploratory approach was used, with goals defined for the 

functional units of software and tests defined to establish whether the goals have been met; a 

commonplace approach in software development.  A range of statistical methods have been used to 

establish success, including a standard range of statistical aggregates, analysis of p-values using T-

tests where necessary; formalisation of the theory underpinning the solutions as algebraic 

expressions, using both set theoretic notation and the relational algebra; and discovery and display 

of our results using a range of graphs and visual metrics. 

 

 

1.5 Ethical Issues  

 

Some constraints were in place for the interviews.  Many professionals in the field are based in the 

countries in which the main platform providers primarily operate; thus, the interviews were 

conducted via video conferencing technology for reasons of economy.  This was convenient, but to a 

certain degree removed some of the interpersonal rapport between the interviewer and interviewee 

that may otherwise have elicited more detailed, honest and comprehensive responses.  

 

Aside from ordinary ethical precautions associated with conducting interviews and data handling 

requirements dictated by the Data Protection Act (2018) and latterly the replacement General 

Data Protection Regulations (GDPR) when dealing with personal information, there are no other 

ethical concerns related to this research.  All third-party respondents are non-vulnerable adults 

participating voluntarily and knowingly in activities that are solely verbal or electronically 

interactive, dealing with non-sensitive topics.   

 

Proportional ethical approval for both the survey(s) and interviews in the formats described was 

obtained from the Principal Supervisor and the Faculty of Computing, Engineering and Sciences 

Research Ethics Committee on 24 March 2017. 
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1.6 Thesis Structure 

 

This chapter has provided an introduction to the research and specified the research questions, 

aims, and objectives; outlined the contribution to knowledge, and shown which research 

philosophies, approaches and tools were used to carry out our investigations.  Research outcomes 

and ethical considerations have also been discussed. 

 

RDBMSs and the relational model more generally have a long and detailed history.  Chapter 2 

(Background) describes the theoretical underpinnings by discussing previous contributions to this 

history from many of the seminal authors and practitioners in the field.  Several of the issues in 

relational theory and practice are defined and linked to some central causes - the increase in the 

volume, variety, and velocity of data at scale; the emergence of Object-Relational Mapping (ORM) 

frameworks, their associated performance anti-patterns and the extent to which ORMs have been 

embedded into software development and release architectures, and a discussion on their 

contemporary applications.  

 

Chapter 3 (Literature Review) presents a selected topical literature review; these topics include 

the challenges presented by ORM platforms; relational query performance optimisation; the effects 

of the 3 ‘V’s of big data; and advances in alternative query representation forms.  Object-relational 

impedance mismatch is described and defined in detail and compared to prior literature which has 

aimed to solve or mitigate the resultant practical issues.  This section also examines the difficulties 

in performance tuning queries posed by over- and under-normalisation of schema architecture and 

presents some of the extensive literature in this area. 

 

In Chapter 4 (Problem Investigation), these issues are specified more clearly, addressing their 

scope and applicability to the aims, and this section presents our primary qualitative research, a 

series of surveys conducted both on an individual level through expert interviews and through 

engagement with the wider technical community in the form of a tailored and targeted 

questionnaire.  The findings are augmented with references to the findings of the published papers 

that emerged from this research, which focus on the issues created by ORM products in RDBMS 

engines and include practical demonstrations of these shortcomings in both theory and practice, 

using current enterprise tooling.  Two separate real-world datasets and two different RDBMS 

platforms are used.   
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In Chapter 5 (Solution Design), having established the background and current state of the 

literature in Chapters 2 and 3, and establishing the depth and scope of the problems in Chapter 4, 

an overarching solution is defined.  This solution, termed PETAS (PErformance Tuning with 

Adaptive Schemas), is comprised of several elements, each element working together to provide an 

alternative methodology for query handling, caching and execution.  This section expands upon a 

key deficiency in the very kernel of the RDBMS engine, particularly in how SQL queries are parsed, 

cached and optimised – a deficiency which is common across RDBMSs.  This section presents an 

argument showing how this fault stems from an internal query representation problem and proposes 

a new method for internal query representation, the multidimensional adjacency matrix.  It is also 

shown how queries can be compared and ranked by using this matrix method combined with 

Hamming distances and the use of a statistical technique (k-nearest-neighbour) more commonly 

associated with machine learning.   

 

Chapter 6 (Testing: Query Representation) is a deconstruction of the first element of 

PETAS, the novel query representation in graphical form using multi-dimensional adjacency 

matrices.  Continuing from the solution description in Chapter 5, a brief introduction is provided 

and an implementation of this component is presented. This section details the experimental testing 

details the research outcomes.  The applicability of this approach to RDBMS systems in general is 

discussed.   

 

Chapter 7 (Testing: Schema Selection) extends the description of the schema selection 

mechanism from Chapter 5, which makes use of some simple machine learning algorithms to 

classify inbound queries as belonging to certain pre-defined schemata.  A working k-nearest 

neighbour implementation is demonstrated and tested alongside the query parser.  This section 

provides evidence of a working implementation and documents the results. 

 

Chapter 8 (Testing: Dynamic Schema Redefinition) describes the third innovation of 

PETAS, the dynamic schema redefinition mechanism, which leverages the principles of axiomatic 

set theory to allow RDBMS systems to maintain multiple, parallel schemata which are simple 

transformations, translations and subsets of a base schema.  Leading off from the definition of this 

component in Chapter 5 and in particular the novel definition of query efficiency, it is shown how 

this feature can be used independently to provide both tangibly faster query execution for a variety 

of query types.  This section provides evidence of a working implementation using materialised 

views as substitutes for alternative table metadata definitions and indicates how this can be used 

alongside the query parser and selection mechanism. 
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Chapter 9 (Conclusions, Reflections and Future Work), summarises the overall validation, 

testing and results of the experimentation on each component of PETAS.  This chapter brings 

together the previous qualitative work with domain experts, the quantitative testing carried out 

using empirical methods, and the testing of each component as described in Chapters 6, 7 and 8.  

The outcomes of testing our PETAS implementations are demonstrated, integration testing is 

discussed, and the strengths and weaknesses of our testing methodology and overall solution are 

considered.  This section brings together all the strands of the research and presents the 

conclusions, revisiting the aims and objectives, considering the novel contribution to research and 

summarising areas for future research that can develop these ideas further.  

 

The Appendices, containing supplementary material as directed throughout this document are 

included at the rear.   

 

 

1.7 Novel Contributions to Knowledge  
 

 

The novel contributions to knowledge that this research provides are summarised as follows: 

 

- The research and production of a novel query representation technique to store database 

queries as multidimensional adjacency matrices – directed graphs in an array form.   

 

- The research and production of a novel algorithm for similarity scoring, using existing 

techniques but applied to multidimensional adjacency matrices in such a way as to 

effectively compare the structure of any two matrices and produce a normalised linear 

output. 

 

- The research and production of a schema mapper component which can effectively assess 

inbound queries, adjust internal weights and rank-order queries by relative accuracy in 

predicting performant sub-schemas. 

 

- The production of a method for subset schema generation through dynamic schema 

redefinition – while this element in particular is based upon existing methods such as 

materialised views, and similar ideas have been explored before [6], this method is novel in 

the interface with the schema mapper, the definition of a new efficiency metric and the 

definition of a view variant which accesses data pages directly without reference to a base 

schema, a deviation from the traditional view. 
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- The publication of three conference papers and a journal paper which detail the problem 

investigation and the different components of PETAS.  

 

1.8 Chapter Summary 

 

This chapter introduced the research project, stated the project motivation, and made the case for 

the importance of investigating the effects and solutions to the impact of object-relational 

impedance mismatch upon relational database management query optimisers.  The chapter 

specified the research questions, aims and objectives, and commented upon the novel contributions 

to knowledge, narrowing down two key deliverables.  The research approach was identified and, 

using Saunders, the paradigms, approaches and techniques were chosen.  This section also 

presented the three-phase research plan and detailed the selected approaches to the qualitative and 

quantitative aspects of the research methods for both the primary and secondary aspects of the 

research outcomes.  Finally, ethical issues were summarised.   

Chapter 2 provides a comprehensive overview of the problem background incorporating a 

summative literature review, expanded into a topical in-depth literature review in Chapter 3. 
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Chapter 2:  Background  

 

2.1 Introduction 

 

This chapter discusses the fundamental ideas intrinsic to the remainder of this research and defines 

the key terms, providing a summary literature review on query performance concerns in relational 

database systems.  The Relational Database Management System (RDBMS) is defined and 

explored; this chapter elaborates the definition of a database query, the underlying data structures 

are characterised, and the accompanying Structured Query Language (SQL) used in RDBMSs is 

described.  The RDBMS and the SQL language are linked by outlining the query optimisation and 

execution process inherent in RDBMS systems, and the life of a query from inception to completion 

is illustrated in Section 2.4.  Some issues around query performance tuning are examined, 

particularly with reference to the difficulties of tuning a query and the accompanying effects this 

may have on application dependencies; some other strategies for schema-driven performance tuning 

are also described.  Finally, the summary brings together the key points from this chapter. 

 

2.2 Relational Database M anagement Systems 

 

2.2.1 Overview 

 

Data is all-pervasive, and intrinsic to almost every interaction one has with the world.  

Increasingly, people are choosing to measure, store and interact with data through, for example, 

consumer home automation devices, and self-management of fitness and wellbeing with wearable 

devices [1].  As society takes an increasingly interactive role with Internet-connected machines, the 

data that these devices generate must be stored safely, securely, consistently and must be available 

when needed.  In this sense, and like the traditional data collated and held by organisations, 

improving the ability to optimise and improve the performance of relational database queries across 

a range of database management systems remains a central issue in computer science [2, 3]. 

In relational database theory, a schema is a collection of database objects, primarily but not only 

tables, with each table being a collection of data points organised into columns and rows [4, 5, 6].  

Such an arrangement is designed on the principles of relational algebra from axiomatic set theory 

[7], and tables are described as relations, although there are differing opinions on this definition [8].  

Database queries are used to access this relational data through a relational database management 

system (RDBMS) interface.   
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Databases may have multiple schemas, and each schema represents a collection of tables or 

relations which correspond to one single physical arrangement of data in the storage layer [9].  By 

physical arrangement, it is meant that the data itself is arranged into a structure, typically a series 

of pages.  Each page is a fixed size, and the data is stored within these pages in an ordered manner, 

with each page having a physical address in the storage layer, with collections of pages 

supplemented by metadata, such as index pages, describing their structure [10].  It follows that the 

table structures and consequently the schema structures as implemented in the RDBMS are 

therefore logical constructions since the schema is a logical abstraction of the collection of storage 

addresses.   

The tables within a schema remain static in contrast to database queries which are flexible in 

structure, easily changed, and able to project, join and filter data from a variety of tables to meet 

the users’ requirements, bounded only by the confines of the objects present and the query language 

dialect in use, both dictated by the tenets of the relational model.  The static nature of the 

relational schema is arguably a disadvantage in database systems with much flux in the variety and 

volume of the data, as noted by Nayak et al. [11] in comparison to the general class of NoSQL 

systems which provide a wider range of data models. 

The primary language for interacting with relational database systems is Structured Query 

Language (SQL).  There are several dialects available depending on the implementation of the 

RDBMS, but the core operations are defined within a set of standards, the latest iteration of which 

is ISO/IEC 9075:2016 [12].  SQL itself is split into several sublanguages, and in RDBMS systems, 

the two key divisions are Data Manipulation Language (DML) and Data Definition Language 

(DDL).  The former is responsible for creation, amendment, and destruction of database objects 

(using commands like CREATE TABLE) and the latter is responsible for the aforementioned data-

centric operations (such as INSERT INTO [table]).  

Database queries are implementations of the relational algebra, a set-based logical method of 

arranging data into domains and sets of related domains, and the methods for operating upon these 

sets by projecting, aggregating, matching, and filtering these sets into subsets.  Therefore, query 

performance tuning – specifically the methodology of presenting queries to RDBMSs in such a form 

so that they execute efficiently – is a problem that can be abstracted from query languages to the 

relational algebra.  Since each database query has a relational algebraic representation, and that 

the processing of a query can be described as the application of several algorithms to the query, it 

follows that the act of processing a query can be reduced to a description of the application of a set 

of logically- or mathematically-described algorithms to a set-theoretic algebraic expression; thus 

query processing is generalisable from the specific SQL case to the abstract logical and algebraic 

case.  This is not always true since SQL extends the relational model; likewise, there are some 

operations in the relational model, such as relational division and renaming, which are only 
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indirectly supported in SQL.    

 

2.2.2 The role of the schema 

 

One well-understood categorisation of data access approaches is the so-called schema-on-write and 

schema-on-read separation, where in the former case, the schema, or data structure, is already 

known and the data is written into this structure.  In the latter case, the data can be unstructured 

and the data is simply written as-is, with a schema (if needed) being defined whenever the data is 

retrieved [13].  The former case, schema-on-write, underpins the fundamental design of relational 

database management systems (RDBMSs) [3].  An RDBMS is designed to store data in predefined 

schemata (plural of schema).  Unlike static data stores, relational systems have the advantages of 

being able to incorporate key set-theoretic ideas, such as the idea of selecting combinations, 

intersections or aggregates of different data from the tables on-demand, and being able to select, 

filter and arrange the data to suit [4].  Data can also be inserted, updated or deleted according to 

set criteria and manipulated en masse.  The functional programming language SQL (Structured 

Query Language) is a common and widely-implemented method of contructing queries to do this - 

queries are sets of these commands [14]. 

 

2.2.3 Current issues 

 

Today's RDBMS has other functions alongside data storage and retrieval.  It must provide the 

capability to store the data in a confidential manner, ensuring integrity, and make the data 

available when required.  These attributes, also called the C.I.A. (confidentiality, availability and 

integrity) principles, have been long understood as core components of information systems [15, 16].  

Today's users of database systems also demand other attributes such as high availability, the 

ability of the database system to withstand disruptive, availability-affecting events such as power 

outages through techniques like redundancy; interoperability, the ability for the database system to 

interact seamlessly with other technologies such as object-oriented programming languages and 

non-relational data stores [17, 18]; and business intelligence, the capability for the database 

platform to integrate and support data visualisation and analysis by end-users.   

 

The divergence from the traditional definitions and limitations of a database characterised by a 

plethora of old and new implementations presents issues when trying to maintain standardised 

interfaces, as seen by the addition of platform-specific functionality per implementation of the SQL 

language.  In addition, as Agarwal et al. [19] note, data is resident in many types of platform, not 
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just the divergence of relational platforms, and integrating this data remains a current and 

significant challenge. 

 

Other challenges present themselves.  The movement from functional to object-oriented program 

development techniques over the last 50 years has led to an increased awareness of object-relational 

impedance mismatch, where the object-driven methodologies of application development collide 

with the set-driven, functional paradigms of relational data [20], which give rise to new performance 

challenges for the RDBMS.  The explosion in so-called 'big data', data which is characterised by 

high velocity, variety and volume, amongst other 'Vs' [21], can be a test for the scalability of 

RDBMS solutions.   

 

 

2.3 Query Representation and Comparison 

 

2.3.1 The role of the relational algebra 

 

Database queries are enquiries made upon set-based data structures [6, 7].  Queries are the 

implementation of a collection of different operations on a data set that can be combined and 

modified to produce the required results [5]. 

 

The fundamental operation in relational algebra is the projection.  This can be defined as some 

restriction of a set of tuples (set of related values) and a restriction across a set of attributes in a 

domain.  Another way of describing this is a subset of any larger set, where the subset consists of 

some related values across a equal-or-larger set of possible values, and where each value is a 

member of some wider possible range, or domain.  This is implemented in SQL as a SELECT 

statement.  Note that the subset can be the whole set (or more formally, the cardinality of the 

subset is equal to the cardinality of the whole set, also known as an improper subset), or simply a 

partial subset (a proper subset), or just a single value [7].   

 

Other operations include the join, where a target set is defined as some combination of one or more 

disparate sets, also known as a composite relation [22].  For example, an inner join, or in set 

parlance a theta-join or an intersection, can define a target set combining two smaller sets such as 

the set of customers and the set of sales.  Combining these sets yields advantages in exposing 

hidden data, such as selecting (projecting) a result set that includes the amount spent per sale per 

customer.  Moreover, different types of join such as an outer join (semi-join) can be implemented in 

database systems.  Notably, the anti-join (a join between two relations R and S where there is no 

commonality between the two sets on their join conditions - attribute names) is not implemented in 
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SQL, and instead is normally achieved through the combination of a semi-join (left join) and 

predicates (where clauses).  Fig. 2.1 illustrates a composite relation (inner join, or theta-join), 

across three tabular relations. 

 

More set-based operations include the insert, update and delete operations [5], and operations that 

aggregate information (for example, the sum of sales per customer).  RDBMSs are capable of 

providing query languages that handle most set-based operations but set-based operations are not 

identical to database query languages.  Some operations in RDBMSs are not theorised in set 

algebra (such as pattern matching with IN and LIKE, although arguably IN can be treated as a 

subquery, or in set theory, a composite relation that includes another relational expression, and 

LIKE as a string comparison that includes wildcards). 

 

2.3.2 Query representation 

 

Database queries are the implementations of operations in relational algebra, as demonstrated by 

many researchers, notably the seminal authors of the language Astrahan et al. [23]; later, Ceri and 

Gottlob [25] who built a translator showing how SQL queries can be mapped to relational algebra; 

and Date [8, 25] in various publications.  However, SQL can also extend relational algebra, enabling 

the use of non-relational techniques such as inline functions. 

 

Queries themselves are generated in several ways.  The first is manual creation by a developer.  

This is where the SQL query is encoded into the application within a method call.  Typically, this 

approach is used in older applications where the application code is not expected to significantly 

change over time.  Coding in this manner has some disadvantages - many application development 

languages are object-oriented, whereas SQL is a functional language.  This presents practical 

difficulties when performing operations like passing parameters from a method to a SQL query, 

since the query itself is implemented as a text string upon which the parameters must be 

substituted in as string literals.  The problem of incompatibility between functional SQL and 

object-oriented programming paradigms is known as object-relational impedance mismatch.  Ireland 

et al. [20] identified several layers of mismatch, and the whole topic is discussed more fully 

elsewhere (since the unique challenges that arise by using mapping solutions to overcome this 

mismatch are a major driver of this research).   



 

Fig. 2.1:  Illustration of a theta-join 
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Other methods of using SQL queries (which are extensible implementations of relational algebraic 

expressions) are through stored procedures and functions - pre-written queries accessible within the 

RDBMS by calling an associated method name.  This approach has advantages such as better 

performance through query caching and better alignment with the object-oriented model, but 

disadvantages include the overhead of maintaining a separate codebase within the RDBMS and 

phenomena such as performance issues that result from execution plans derived from poor 

parameterisation [26, 27].  The third, and increasingly common method of generating queries, is 

through the automatic generation of SQL that results from an intermediary Object-Relational 

Mapping (ORM) tool.  These are object-friendly interfaces that map method calls to SQL queries 

opaquely, that aim to reduce the impact of object-relational impedance mismatch so that the 

application developer writes no SQL but instead calls a method which generates the necessary SQL 

for the desired operation.  Implementations include Entity Framework and Hibernate.  While 

ORMs provide advantages such as abstraction and ease of use, disadvantages include the exhibition 

of performance anti-patterns [28, 29, 30].  The advantages and disadvantages of ORM tools are 

described in further detail in the next chapter. 

 

In terms of internal representation, SQL queries undergo a particular process of parsing, binding or 

algebrisation, optimisation and execution.  However, an important part of query performance 

tuning is the ability for the RDBMS to recognise queries which are similar, or identical, to queries 

which it has processed before.  Each query that is presented to the optimiser results in an execution 

plan for the query, which is a set of tangible algorithmic steps that can be taken by the database 

engine to execute the query and return the results.  The ability to identify similar queries yields 

advantages such as re-use of a previously-generated execution plan [4], lowering the time taken to 

process the query, and the ability to cache the intermediary objects such as the parse tree which 

reduces the space required for the plan metadata in memory, increasing memory capacity for other 

queries.   

 

In some implementations, queries can be prepared.  The process of preparing queries means to 

identify the parameters within the query and remove them to a separate list of key-value parameter 

pairs, to be substituted into the query at run-time.  There are advantages to this approach 

including query re-use and interoperability with wider data processing platforms such as LINQ [31].  

However, this approach is dependent on the implementation of the RDBMS.  Queries which are 

frequent often refer to objects which have their pages stored in a buffer cache, meaning a large 

portion of data retrieval can take place in-memory without reference to the disk subsystem, 

significantly reducing I/O costs and reducing the query execution time to the advantage of the user 

[32].   
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Checks for query similarity are limited by nature, because the query execution process by necessity 

must be extremely swift and so an excessive level of query pre-processing would impact overall 

query execution time.  For example, in Microsoft SQL Server, there are basic parameterisation 

options (known as 'simple' and 'forced' parameterisation) which can be selected automatically or 

overridden by the user [33] which will enable the optimiser to recognise that a query has been 

presented before, even if certain parameters of the query are different.  However, a query which is 

logically identical but syntactically different (even to the point of having only additional whitespace 

as the only differentiator) can still be treated as a different query; a major disadvantage for query 

performance, reducing the efficiency of the query optimisation process.  Overcoming this issue 

through the investigation and implementation of a computational method for internal query 

representation is a major objective of this research. 

 

 

2.4 Query Representation and Execution 

 

2.4.2 Query representation and execution 

 

Database queries are semantic structures that use a finite and defined syntax.  Whereas data 

collections in RDBMSs are organised typically into rows and columns, each field (intersection of a 

row and column) containing a data value, and the whole contained in tables, queries are 

algorithmic descriptions of operations upon those collections, and have a different structure.  In 

RDBMSs, this structure must be quantified and turned into a set of executable instructions, and 

this is done via a compiler, in the same fashion as high-level languages are compiled (or 

interpreted) into a set of machine-readable instructions [4].  Regardless of the implementation 

details, the steps for compilation and execution of database queries are generally universal.   

Fig. 2.2 illustrates the general query execution process followed by most RDBMSs. 
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Fig. 2.2:  The query execution cycle.  Derived from Delaney [40]. 

 

 

First, the query is parsed for correct syntax, and this involves a process of tokenisation - words in 

the query are delimited and metadata values (labels, or tokens) assigned to each word.  Tokens are 

then grouped together and mapped to internal operations in the same manner as language parsing 

in natural language processing [34, 35].   

 

Next, the binding (or algebrisation) process associates each token – that is, word or relevant 

syntactical symbol - with an operation or database object.  The outcome of this stage (depending 

on implementation) is the parse tree or the bind tree (these can be distinct, but not always), which 

turns the list of tokens into a flow that fully describes the operations and their interdependencies.  

This is stored in a tree format which can then be read by the next stage of the query optimisation 

process.  Parse trees are described more fully in the next chapter. 

 

In the next stage, optimisation of the bind tree takes place to produce an execution plan [36, 37].  

The execution plan is a set of instructions for the RDBMS to execute which will produce the result 

set specified by the query (or implement the set of operations that the query specified).  However, 

the steps in the execution plan depend upon various factors.  The first factor is the nature of the 

data structures which are being queried, and the operations available to read the data.  For 

example, some RDBMSs differentiate between index seeks and index scans, where seeks look for a 

specific range of data by traversing to the partition or segment of the data that contains those 

values (much like looking up a name alphabetically in a phone directory) and scans read the whole 

table until the appropriate conditions are met i.e. the data is found [38].  Scans are much more 

costly than seeks [36] due to the additional I/O and CPU load demands, and consequently can take 

longer to execute, to the detriment of the query being run and the user waiting upon the results.   
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Other factors include whether indexes are defined on the table structures, as depending on the 

nature of the query the use of an index instead (an index being either a physical arrangement of 

data pages on disk or a secondary structure containing the tabular data in an alternative order) can 

have performance benefits [4, 39] as indexes can be specified as trees and tree traversal can be a 

highly efficient operation.  A third factor is heuristics.  Some RDBMSs use these 'rules of thumb' to 

make swift decisions about the best execution plan for a particular query, depending on the 

structure of the query [36].  An example of this is where the optimiser decides to use an inner loop 

join (as opposed to an inner hash or merge join) for two tables as one table has a very low 

cardinality (population count) and the loop-based operation would be quicker than the pre-sort 

required for the merge or the bucketisation processes involved in hashing.  Implementations differ, 

and thus execution plans also differ depending on the internal query optimisation algorithms of the 

RDBMS.  Fig. 2.3 illustrates an execution plan, showing the execution plan for an identical query 

on identical table structures on different implementations (Microsoft SQL Server and IBM DB2).  

Note how the left-side plan (MS SQL Server) uses a merge JOIN to integrate two sets of pre-sorted 

results from the table scans, but the IBM DB2 (right-side plan) optimiser chooses not to pre-sort 

but instead uses a hash JOIN, sorting once after the JOIN is executed, illustrating how RDBMSs 

can differ in their approach to query optimisation. 

 

Once the execution plan has been produced, the query is executed.  This happens through the 

RDBMS reading the execution plan in the order specified and executing the instructions.  Many 

RDBMSs support parallelism, for example the Microsoft SQL Server RDBMS implementation 

supports parallelism at the CPU (socket) level, the core level, and the thread level [41].  This 

means operations on two 'branches' of the execution plan can be executed simultaneously on 

different processor schedulers, or the workload of a single plan component can be split across 

multiple system resources (such as CPU cores).  An instruction such as 'index scan' may involve 

the RDBMS accessing index pages on disk which specify where the data sought can be found (using 

page addresses and offsets).   

  



 

Fig. 2.3: Two execution plans compared 
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This data is then read by the I/O subsystem in the OS, written to memory (and in some cases, a 

secondary temporary data store on disk) and used for the input of the next component in the plan.  

Each operation is queued upon the CPU using tasks, workers and threads, the standard access 

route in most operating systems (OSs), although this behaviour can be modified using secondary 

mechanisms such as affinity masking [41] for multi-core systems, fibre-weight threading and task 

prioritisation.  The leftmost, or topmost (depending on implementation) component of an execution 

plan is typically the root noun of the query - for projections (selections) this is SELECT and at this 

point the result set will be rendered to the client.  The method for rendering will depend upon the 

database driver and the client being used, but typically will be sent as a text stream which the 

driver will render into the appropriate structure on the client. 

 

The process above describes the typical journey for a single query.  In practice, RDBMSs can and 

do cope with workloads that scale to hundreds of thousands of queries per second, and there are 

many auxillary mechanisms in place that complement the core query optimisation process, such as 

in-memory caching, query plan trivialisation, plan caching and parallelism.  The description as 

given also omits details of the transaction-based model which guarantees the success (or rollback) of 

a transaction and the preservation of ACID principles [42] - a protocol not unlike TCP/IP which 

uses a system of acknowledgements to guarantee message reception - and database locking is also 

omitted, for clarity.   

 

2.4.3 The role of the cost-based query optimiser 

 

In an RDBMS, queries are implementations of relational algebra that execute to either make 

changes to data from storage or retrieve data from storage.  These operations are instigated by a 

calling application or user.  Consequently, to avoid unnecessary delay in the application or to the 

user, database queries should be written in the most efficient manner possible.  By efficient, it is 

meant using the least resources (this can be measured by, for example, CPU, I/O and memory 

grants) to return the expected result set in the fastest possible time.  To enable this to happen, 

RDBMSs can use a variety of approaches, most common of which is cost-based optimisation [43, 

44].  This involves several steps – the query is first parsed, which involves syntactic checks and 

checks to ensure the referenced objects exist.  Next, the query is rendered into an internal canonical 

form compatible with relational algebra.  Next, the query optimiser generates an execution plan 

comprising of various operations to execute the query.  This process typically applies heuristic rules 

to the algebraic query representation to produce a series of operations in an acyclic tree – for 

example, one such rule might be the consolidation and simplification of multiple WHERE 

conditions on a single predicate.   
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Each operation carries a cost – this is typically a function of the CPU and I/O resource cost and 

this cost is a floating-point number that is relative, having relevance only when compared to the 

cost of other queries.  Operations in the tree are executed from the leaf nodes to the root node, and 

so the total cost of the execution plan is the sum of all costs of all operations as measured to the 

root node [39].  The optimiser will attempt to produce the best possible plan by manipulating the 

type and order of these operations within a predefined timeout period – the plan with the lowest 

total cost is the one normally executed by the database engine.  Therefore, generating efficient 

database queries with the lowest possible cost is a core consideration when tuning for performance.  

For this reason, tuning the queries is a logical step in dealing with performance issues, with 

inefficiencies in poorly-performing query structures removed or rewritten to best match the tables 

present within the schema.   

 

This is appropriate not just to generate low-cost execution plans, but because structural changes to 

schemas can result in processes dependent on the existing structure being unable to function – for 

example, the amalgamation of a set of sub-tables into a single table (denormalization) with the aim 

of reducing joins may require changes to all applications which use queries that call data directly 

from the original subset of tables [45].  While this limitation to the schema definition can be 

overcome by the augmentation of the schema with structures like views or indexes, finding and 

mitigating query inefficiencies instead of schema inefficiencies can result in swifter problem 

resolution.  Such query inefficiencies are also often easier to find, manifested by well-understood 

anti-patterns – to name two, queries which use cursors to iterate over data can be outperformed by 

set-based representations (colloquially known as ‘RBAR’ [46], or the N+1 problem [30]), and so 

targeting cursor- or loop-based structures is beneficial for performance; and queries which fetch 

more columns of data than are required for the final result set waste resources and increase query 

execution time (a problem known as eager fetching), addressed by limiting the columns selected in 

the query.  
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2.5 Query Optimisation 

 

2.5.1 Overview  

 

Query-centred performance tuning requires the queries to be accessible, which may be through 

storage within the application layer or definition within stored procedures, or otherwise subject to 

direct manipulation without significant impact to application development.  The limitations of 

ORM tools [20, 28, 30] include but are not limited to non-parameterisation, meaning almost-

identical queries can fill the RDBMS plan cache and cause unnecessary recompilations; eager 

fetching and the N+1 problem; the use of nested queries rather than joins, creating inefficient query 

execution plans; and excessively large queries which require more time to produce efficient 

execution plans than is available in the optimisation process.  These anti-patterns have 

ramifications in the eventual execution plan.   

 

Often, tuning efforts in RDBMS systems are directed away from the queries and into the 

underlying data structures or infrastructure.  Research in this area on an implementation-specific 

basis are described by, among others, Chaudhuri et al. [47] for Microsoft SQL Server; Schiefer and 

Valentin [48] for IBM DB2; and by Dageville et al. [49] for Oracle Database.  There are many 

mitigating actions that can be taken to counter poorly-performing queries by rearrangement of the 

environment in which they run or the structures that they run against, however queries themselves 

can often be rewritten for better performance by arranging them to return identical results but in 

an arrangement conducive to the creation of an efficient query plan.  For example, using a set-

based approach to querying a set is recognisably better for performance than a cursor-based 

approach due to the efficiencies of reducing the number of table- or index scans required against the 

underlying data sets.  However, with the growing popularity and ubiquitosity of ORM tooling, it is 

often necessary to tune the RDBMS for performance despite, or because, of the presence of poorly-

constructed queries, since such ORM-generated queries cannot be readily modified in situ in the 

same way that queries pre-defined in stored procedures or through in-line code can be tuned by the 

database administrator.  These issues are expanded upon in the next chapter. 

 

 

2.5.2 Normalisation and query performance 

 

Relational databases consist of data which are arranged into columns and rows, held in tables.  

Tables can have inter-relationships such as adjacency or dependency (either as a parent or child) on 

another table [4].  These tables can be associated using (foreign) keys, where the existence of a row 
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in one table is dependent on the existence of a related row in another table, as defined by one or 

more columns.  

 

Using this simple set of rules, a system of normalisation was initially developed [6].  Called the 

normal forms, there are multiple normal form levels, each arranged in an increasingly-strict 

hierarchy, which define under what conditions data can be split amongst tables.  Third-normal 

form, abbreviated to 3NF, is commonly in use however there are also higher forms of normalisation; 

4NF, 5NF and BNF, which further restrict the dependencies and transitive dependences allowed in 

the database schemata.  In practice, normalisation can be a barrier to performance due to the 

increase in the number of JOINs required to access the data [50, 51], which in consequence 

increases the number of table- or index scans required to read all data from disk into memory.  

This is exacerbated by the different locations of that data on disk, meaning a higher proportion of 

non-sequential reads than would otherwise be required.   

 

To illustrate this point, consider a database query which means ‘to display the product name and 

product colour of all red bicycles where the stock level was last updated after 01 Jan 2019’ from a 

database containing products.  This can be structured in many different ways, but the performance 

outcomes will differ.  Fig. 2.4 illustrates a query which implements this expression in SQL using a 

3NF-normalised schema.  Note first the complexity of the normalised query and the corresponding 

execution plan.  Fig. 2.5 illustrates the same query, implementing the same expression, with the 

same result set, implemented against a denormalised schema.  In Table 2.6, the relative resource 

consumption is compared, noting the significantly higher amounts of resources used by the first 

query than the second; with the additional complexity of the normalised plan realised as a full 

optimisation cycle rather than a trivial optimisation (implemented in Microsoft SQL Server). 
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Fig. 2.4: Illustration of a normalised database query 

 

 

 

 

Fig. 2.5: Illustration of a denormalised database query 
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Table 2.6: Relative costs compared between queries  

 

 

 

 

2.5.3 Other query tuning strategies 

 

One further strategy for coping with the inflexibility of database schemata is the use of views.  A 

view is a query over some set of relations, but persisted to the database so it can be used again.  

Views can be categorised as materialised (or indexed), and non-materialised [52].  The former is a 

view which is connected to the underlying schema - if the schema changes, the view becomes 

invalid, since it is underpinned by an index that fetches the data referenced in the view. In this 

sense the view is a highly-specific index used to retrieve data corresponding to a particular query - 

the disadvantage of this approach is the necessity to have the index as a separate data structure 

from the base pages, meaning an increase in the storage required, a dependency to update this 

index whenever the base table is updated and additional overhead in database administration.  

Materialised views are non-compatible with some relational expressions, with especial difficulty 

encountered when implementing outer joins.  Non-materialised views, on the other hand, are simply 

saved semantic representations of queries - when such a view is run, the view definition - the query 

- is run against the base tables, and consequently attracts any performance issues each time it is 

executed.  This kind of view is created for simplicity and ease of use, but it serves only to mask the 

query that constitutes it. 

 

Good schema design is intrinsic to good RDBMS performance.  Recently, there is an increased 

focus on microservice architecture in application development [53, 54].  This paradigm is focused on 

the provision of small, single-purpose services that interact through common interfaces to achieve 

goals.  Applied to database architecture, this can result in the provision of many small, single-

purpose databases that hold data pertaining only to the owning application service.  While this 
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advantage can yield benefits in code simplicity and local performance, the same schema design 

problems that attach to larger databases also exist in smaller ones - to normalise or denormalise, 

which data types are most performant for the data being stored, whether to use hard-defined 

foreign keys or rely on application-enforced soft keys, and how tables should relate and depend 

upon each other.  Arguably the overhead of maintaining many small, independent databases may 

improve the simplicity of the system from an application development perspective, but also 

increases the complexity of database administration.  Microservices architecture may simplify 

access for the application developers but there is no evidence that it alleviates query performance or 

schema design issues. 

 

2.5.4  The role of schemata in query optimisation 

 

At the time of writing, there is very little current research into better schema design in relational 

databases.  With the improvements and recent focus on machine learning (ML) as a solution 

applicable to many different domains, there exists a gap in building a better schema design 

framework that is malleable and better-performing than single, fixed schemas, and this gap may be 

filled by ML-powered techniques.  Chen [55] made exploratory forays into the applicability of ML 

to schema design, but follow-up research has been slim.  This issue, and other research into this 

area is discussed in the next chapter, and the solution presented in later chapters describes the 

design and implementation of an ML-powered learning process for autonomous relational database 

schema design. 

 

The existence of a pre-defined schema is integral to the concept of a relational database.  As a 

relation is defined as a collection of related records from across one or more sets, with appropriate 

filters [25], ergo these sets must exist before a relation is formed upon them.  This idea of schema-

on-write, as it is also known, means that when data is recorded into a relational database the data 

is written into the pre-formed schema using the defined rules of SQL and the RDBMS.  This differs 

from schema-on-read, where data is drawn (typically in non-relational database systems) from a 

data 'lake', or loosely-defined schema, and reformed into the appropriate configuration during 

runtime for the benefit of the application [56].  This latter method of fetching data is used 

extensively where the data itself does not form a consistent structure from record to record - data 

such as the content of tweets [57], or data derived from web frameworks where the attributes 

(columns) of the data can change in their definition from software release to software release. 

 

Other database performance issues are rooted in schema design.  Tables with large numbers of 

rows, for example, are subject to longer data retrieval times since the underlying heap (unindexed 
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table) or index can comprise many millions of pages, and index traversal times will increase 

accordingly.  Strategies exist to counter these issues such as the use of supplementary indexes [58] 

and the use of in-table partitioning [59], together with infrastructural strategies such as the use of 

faster storage for heavily-used tables and the variation of transaction isolation levels to reduce 

locking [60].  Karwin [30] identifies 'god tables' as a design anti-pattern; these are tables which are 

so integral to the retrieval of data they are referenced more so than the average for the rest of the 

schema, to the detriment of performance as their associated pages are queued for access.   

 

Denormalised databases are sometimes seen as potential solutions for the complexity introduced by 

normalisation and to increase the efficiency of data retrieval.  Sanders and Shin [61] provide a 

treatment of the history of denormalisation and the performance effects on relational databases.  

Citing Hahnke [62], they note that denormalisation seems particularly effective in business data 

environments that are analytic in nature (such as data warehouses, or data marts), constructed 

using guidelines such as the Kimball or Inmon methodologies [63, 64].  They also note that 

denormalisation is a successful strategy when there is a complete understanding of application 

requirements available.  This is a crucial point, since by design normalised databases can cope well 

with different application needs, and as the application matures a well-normalised schema can serve 

many different purposes.  As Batini et al. [65] argued, the database environment should be such 

that "all users' data requirements and all applications' process requirements are 'best satisfied'".  

This aim would appear to be tangential to a database schema that is denormalised to cope with a 

specific application's needs, or even to the needs of a particular query.  Therefore, it can be 

concluded that denormalisation alone is not a sufficient strategy to ensure system-wide assurance of 

efficient database query processing since there are trade-offs between the scalability of 

normalisation and the performance effects of de-normalisation. 

 

 

2.6 Chapter Summary 

 

This chapter introduced the Relational Database Management System (RDBMS) and explained the 

role and importance of these systems in the context of modern application software platforms, 

describing how traditional relational database systems face an extraordinary challenge in dealing 

with the growth of data generated by ever-expanding application data generation driven by societal 

uptake of new technologies.  The rise of object-oriented programming techniques was charted, and 

their influence in creating object-relational impedance mismatch issues when establishing a data 

access layer in application architecture was examined by surveying the key literature in this area.  

Finally, the key steps of the query optimisation process framework within RDBMSs were discussed 

together with a variety of performance optimisation strategies within this framework, including 
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design-led approaches such as normalisation and use of views, and engine-led approaches such as 

query parameterisation, with reference to the literature. 

Chapter 3 presents a topical literature review examining historical and current research for some of 

these issues in more detail, together with other selected topics closely related to the aims and 

objectives of this research. 
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Chapter 3:  Literature Review  

 

3.1 Introduction  

 

This chapter investigates several key research areas that inform the problem definition and design 

of this research; database performance tuning, existing query parsing techniques, object-relational 

mapping technologies, information representation using graph theory and machine learning for set-

theoretic applications.  In line with the chosen research philosophy, these areas are investigated 

using a pragmatic, top-down approach rooted in grounded theory.  For each area, a topical review 

of both historical and current research is presented, with the inclusion of other relevant material 

from industry where appropriate. 

 

3.2 Literature Review M ethodology  

 

This literature review was influenced by concepts taken from grounded theory, particularly using 

the technique of theoretical “memoing” [1]. The literature was identified using abstract review and 

snowballing (following chains of previous references) as described in Chapter 1. 

The following subsections give an overview of the historical and current research into the core 

research areas underpinning this research, extending the introduction and definition of the general 

themes that were presented in Chapter 2. 

 

3.3 Database Performance Tuning  

 

3.3.1 Overview 

  

The importance of database performance tuning has been understood for many years.  Shasha [2] 

simplifies the definition of database tuning as 'the activity of making a database system run faster', 

but tuning is also about reducing the load on the supporting systems so that concurrent 

transactions or other system activity are able to complete in an efficient timeframe.  However, 

Shasha also emphasises the importance of writing database queries in such a way that they 

consume the least time on not just the underlying hardware, but the underlying data structures - in 

particular, the reduction in locking time on the data pages of the tables involved in the transaction.  

This paper also notes the performance implications of using a serialisable approach to sequential 

record inserts in B-tree structures, an observation which has stood the test of time and is still 
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reflected in the current advice on concurrency restrictions in serialisable transaction isolation levels 

as issued by RDBMS developers such as Microsoft [3]. 

 

3.3.2 The effects of data growth and maturity in query tuning 

 

The purpose of RDBMS systems is to store and manage large amounts of structured data.  Often, 

this data accumulates over time - indeed, records themselves might have strong temporal links, 

such as the accumulation and storage of log files, or for sets of financial transactions.  This means 

that data will accumulate in the data structures and consequently, over time, the behaviour of the 

query optimisation process will change as the volume of the data increases.  In RDBMSs, there are 

several approaches to managing an increasing pool of data.  Horizontal partitioning [4] concerns the 

separation of a set of data (i.e. in a table) into several subsets based on some partition function.  

This is a technique supported in all major RDBMS systems and has the advantage of reducing the 

number of records required to be searched during a table scan, since only the partition where the 

record is expected to be located is targeted.  Vertical partitioning, also known as sharding, is used 

primarily in non-relational systems since it involves splitting a table column-wise, which under the 

relational model would necessitate extra JOIN operations, computationally expensive.   

Several attempts have been made to demonstrate the viability of vertical partitioning in relational 

models.  Antova et al. [5] propose the extension of relational algebra with 'U-relations', a relational 

operation that can calculate possible rather than definite answers to a query, which inherently 

supports vertical partitions between tables.  Cornell and Yu [6] examined vertical partitioning 

algorithms, citing earlier work in this field by Navathe et al. [7].  However, Cornell and Yu is 

limited to some extent as their approach is static in nature - the vertical partitioning is applied at 

the segment level (collections of physical data pages), not necessarily at the logical level; their 

approach applies only to lower the number of disk accesses rather than lower the complexity of the 

query; and as the authors state in the paper, is unsuitable for queries that access the 'non-primary' 

segments (the columns accessed via JOINs on the primary key column(s)) relatively often.   

Rodríguez and Li [8] proposed 'dynamic vertical partitioning', a rule-based system where database 

queries were monitored for the attributes most commonly used, and tables vertically partitioned to 

accommodate the most common queries, thereby regularly changing the face of the database 

schemata.  This latter approach is alike to the approach proposed by this research, discussed in 

later chapters.  Today, horizontal partitioning is commonplace across all major RDBMSs but 

vertical partitioning has not been implemented, save within some niche features such as 

columnstore indexing [9] and is viewed as applicable only to NoSQL, or non-relational, database 

systems.  The novel approach of this research project, creating divisions of the base schemata into 
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subsets, provides a combination of both horizontal and vertical partitioning at the tabular level to 

reduce the data necessary to parse to provide query responses. 

Another approach to large-volume data management is archival.  Considering an organisation such 

as a bank, it would be a reasonable assumption that the most common data accessed within the 

relations that store a customer's financial transactions would be the most recent ones, with less 

frequent accesses to slightly older data (perhaps in the form of generating statements, or 

aggregations of recent transactions) and almost no accesses (or none at all) to very old data, such 

as banking transactions from some months or years ago.  In this circumstance, data archival could 

be a valid strategy for managing the volumes of data.  Archiving data removes the rows from the 

tables, normally to 'cold storage' or at the least, out of the active tables.  This reduces the number 

of rows involved in each subsequent query, speeding up accesses.  There is comparatively little 

research available in the field of relational database archival strategies; conceivably, this could be 

because the movement of data is well-understood and could be seen as a common component of a 

business process workflow.  Such an approach could be modelled as a rule-based system; for 

example, rows from a 'Sales' table could be archived on a regular i.e. monthly basis, removing the 

oldest month of data to an archival table or separate database.  Such an approach is used with 

partitioning (see above) in so-called 'sliding window partitions', where data matching some rule is 

regularly re-allocated to matching partitions.  Nehme and Bruno [10] present this concept as part of 

a wider partition management strategy in the setting of a parallel database system; an 

implementation of this technique in a popular RDBMS is detailed by Sundar [11].   

 

3.3.4 Schema design and the effects of normalisation 

 

During the design process, entities and their attributes are identified and linked, and the data flow 

between entities is mapped, often with tools like Entity Relationship Diagrams (ERDs).  This can 

take place at the conceptual, logical and physical layers.  Consequently, this translates 

organisational requirements into logical schema designs similar to application class diagrams which 

show how each entity interacts with others.  However, in the database, the schema may be mapped 

differently - this is the physical schema design, and this can differ from the logical design in a 

number of ways - for example by normalisation, naming conventions, key management or RDBMS-

specific implementation details.  Martyn [12] notes that complexity in database schemas is not 

necessarily a problem: "If your real world is inherently complex, then your logical schemas should 

represent this complexity, and your users must understand this complexity in order to accurately 

formulate their queries".  Thus, Martyn shifts the responsibility for efficient query formulation from 

the system to the user.  However, in systems where the queries are generated by external providers 



 

- 53 - 

 

 

such as ORMs, this abdication of responsibility is meaningless.  Instead, the schemas must 

themselves behave in ways conducive to good performance of the database as a whole. 

To this end, normalisation (discussed in the previous chapter) is often used to model these complex 

relationships but has been identified as a barrier to performance.  Normalisation allows the 

modelling of complex relationships (for example many-to-many relationships) in such a way that for 

all tables in schemas compliant to normal form (which range from 1NF through to 5NF, then 

various specialist versions such as BNF), each relation corresponds to certain rules.  For third 

normal form (3NF), this consists of row/column intersections that contain single values; all tables 

have a primary key, and all non-key columns in the tables are dependent wholly and only on the 

primary key for the table with no transitive dependencies.  This has some advantages, including the 

reduction of duplication in the database, but this can be at the expense of query complexity 

through the increase in the number of JOINs required to satisfy a query.  Lee [13] recognised this 

as a problem of cost vs. benefit and produced a methodology for determining the extent to which 

normalisation should be applied to a design, using a system of decision trees, and formalised the 

benefits of normalisation in terms of storage space as a series of equations.   

In contrast, Pinto [14] lists four principles as an argument for systematic denormalisation of 

previously-normalised data schemas: convenience, stability, simplicity and performance, and goes 

further to propose a denormalisation methodology.  However, Pinto's case hinges on reducing the 

complexity as presented to the user and to reducing the number of JOINs.  The former point is 

rendered invalid by the generation of queries via ORMs, leaving no human user for whom to reduce 

complexity, and the latter point could be mitigated through e.g. the use of materialised views on 

top of subsets of complex normalised schemas, or reduction in access times facilitated by faster 

underlying infrastructure; and furthermore, such gains may be neutralised by the increase in data 

volumes and therefore increased time spent on I/O operations that a denormalised schema would 

bring.  Sanders and Shin [15] recognised these disadvantages of denormalisation and called for a 

balance between both normalisation and denormalisation together with a better understanding of 

application requirements. 

Database schemas can also change over time through the introduction of new application design 

features which necessitate the redesign or extension of the logical database schema to accommodate 

the data requirements of the new features.  Al-Barak and Bahsoon [16] recognised the difficulties 

caused by schema evolution, which they termed 'database debt', through a case study; namely, the 

absence of referential integrity due to restrictions in the implementation; violation of normalisation 

rules; violation of atomicity of values (single values in each row/column intersection), also a breach 

of 1NF; and overlapping tables - tables storing columns duplicated elsewhere, also called a breach 

of orthogonal design [17]. 
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3.4 Query Tuning and Frameworks 

 

3.4.1 Overview 

 

As described in Chapter 2, database queries are implemented in SQL which obeys a common 

ruleset enforced by the standard [18], notwithstanding extensions to the language provided by the 

various RDBMS manufacturers.  There are various pitfalls associated with writing database queries 

that can be traced, at least in part, to the influence of object-oriented thinking to a set-based, 

relational and functional programming environment.  Karwin [19] identified various SQL 'anti-

patterns' - these are patterns of behaviour that can be exhibited in both manual and ORM-driven 

settings.  One such anti-pattern is the so-called 'N+1' problem, where rows are queried individually 

and repetitively before being amalgamated by the calling application.  This anti-pattern exists in 

manual queries too but can also be enabled by the applications, and only limited assistance is 

provided by indexes [20]. 

Karwin also identified other query design anti-patterns; the so-called attribute-value pattern, where 

data is stored as key-value pairs in a relational database, subverts the structure of the relational 

model by storing attributes (columns, or domain values), in rows.  Other anti-patterns are the 

misuse of NULLs, where blank or empty string values are substituted for NULL (or conversely, 

where NULL is used inappropriately).  NULL has several unusual properties, including 

immutability and non-identity; the expression NULL = NULL, for example, is a contradiction.  

However, there are advocates for NULLs in database systems; Zaniolo [21] advanced the possibility 

of incorporating the concept of NULL from the implementation layer into relational algebra to 

represent unknown values.  Another anti-pattern is to use pattern-matching inappropriately within 

a database query; using wildcard characters in LIKE or IN statements, for example, is very difficult 

to tune for since the full string of the values in any included columns will need to be parsed to 

determine whether they match the predicate.   

 

3.4.2 Index-based query optimisation 

 

Indexes can be categorised as two forms: an arrangement of data pages in such a way that the 

pages are accessible using a structure called a B+-tree [22], where some inherent order is required; 

or an arrangement of supplementary data pages that sit alongside the base table data and allow 

queries to access data partially or solely from this structure to satisfy a query.  These structures are 

also in B+-tree form.  Tables not in an indexed form are called heaps, which are simply collections 

of unordered data pages, and are the most expensive (in terms of disk accesses) structures to read 

from, but can be swift to write to, since pages can be written contiguously and not require page 
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splits or index reorganisation.  This is a subject of some debate in the literature, since in the right 

circumstances a clustered index (index of the first type, non-supplementary) can be quicker for 

writes [23].  Modern database implementations use complex tree optimisation techniques to manage 

and access B+-trees since their initial introduction to relational databases [24].  These methods are 

often proprietary in commercial RDBMSs. 

It is understood within the industry that a careful trade-off is required between the implementation 

of indexes to alleviate delays caused by excessive reads and the overhead this requires in terms of 

additional writes to these indexes upon table insertions, updates or deletions, the additional storage 

required, and the additional load on the query optimiser at run-time [23, 25, 26].  The mechanisms 

of indexes themselves have been the subject of much academic enquiry; Lu et al. [27] considered the 

use of the T-tree, an alternative to the B-tree, for memory-resident databases; Cooper et al. [28] 

considered the use of indexes in semi-structured data; early research noted the suitability of R-trees 

and their variants on non-traditional databases, including those with spatial data [29, 30]; more 

recently, Fuhry et al. [31] presented an indexing methodology based on B-trees suitable for use with 

encrypted data, and Dziedzic et al. [32] explored the possibilities of hybrid columnstore and B-tree 

indexes in RDBMSs.  On a practical level, database administrators will look to ensure that indexes 

in RDBMSs are neither excessive nor missing; that they adequately cover a broad range of queries 

on the base tables; and that they are properly maintained, to wit that they are not excessively 

fragmented. 

 

3.4.3 Infrastructure considerations and other mitigations 

 

Other best practices in database management include the due consideration of the underlying 

infrastructure of an RDBMS.  Although infrastructural considerations are not considered a primary 

objective of this research, some discussion is useful on the impact of the physical layer on the 

performance of database systems.  Storage, for example, is particularly important when considering 

that RDBMSs will often access data pages and that these data pages ought to be as accessible and 

responsive as possible.  Typically, then, read operations will work best across contiguous data pages 

(pages which are adjacent) rather than fragmented pages, the latter of which will manifest as a 

random I/O access pattern [33].  Traditional hard drives will fare particularly worse than solid-

state drives or provisioned cloud storage due to the mechanical limitations of these drives.  

Therefore, it is generally accepted that RDBMSs should generally be based on servers which are 

solely directed towards the RDBMS and do not co-tenant with other applications or even other 

unconnected databases [34].  Furthermore, various best practices exist concerning the location and 

co-location of database files; while main database files, for example, tend to incur random reads 

from many different concurrent queries, transaction log files incur mostly sequential writes, and so 
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the two are normally separated onto different drives for better performance.  Any temporary 

database or temporary 'scratch' files are normally located away from the main database files for 

similar reasons [35].   

From a computational perspective, most RDBMSs support parallelism and so it is advantageous to 

provide multiple processor cores to service queries [36], although in rare circumstances an 

overabundance of processor cores coupled with the misconfiguration of the parallelism settings in 

the RDBMS can actually cause queries to return slower in a parallel environment than when 

running on a single thread, and in some cases using parallelism can result in query conditions on 

the applications [37].  Other environmental considerations are the amount of main memory 

available to an RDBMS.  It is increasingly found that databases can be hosted entirely in memory; 

indeed, some RBDMSs support this as a feature.  The advantage of doing so are vastly increased 

access times to the data pages, since the reliance on the underlying storage is removed; however, 

there is a potential for data loss using this method since in the event of power loss or other 

malfunction, any data not persisted could be destroyed.  The operating system also has a part to 

play in the proper performance of an RDBMS.  On Windows-based systems, for example, some 

configuration is required to ensure the RDBMS software has a greater degree of control over paging 

than other applications might require [38] 

. 

3.5 Existing Query Parsing Techniques  

 

3.5.1 Context 

 

When presented with a SQL query, the query must be transformed in such a way as to present a 

clear and precise algorithm to the underlying database engine.  This algorithm must specify which 

operations to complete, in which order, and how the operation should be carried out.  Although 

SQL queries are based upon set-theoretic concepts [39], they are also based in natural language, 

and this means a translation from query to algorithm is required before the query can progress 

through the query optimisation and execution process.  In this sense there is little difference 

between the treatment of SQL queries to the treatment of any other higher-order language - the 

SQL query is compiled into a form that can be executed.  This translation is called query parsing 

[40], or query simplification, and in essence seeks to tokenise each element of the query to identify 

the assets (such as data tables) and the operations (such as joins) which will then enable the 

computation of a viable execution plan. 

The translation of a piece of original text to a taxonomy or structure against which one can 

compute is not a novel problem and has many overlaps in different areas of research including 
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natural language processing [41].  Extracting meaning from natural languages is difficult not least 

due to wide vocabularies, linguistic anomalies and difficulties in understanding context-based 

sentences [42].  However, database query parsers have several advantages over natural language-

based solutions.  First, the SQL language is, when compared to the full gamut of a natural 

language, artificially constrained in breadth.  The choice of verbs is severely limited, the constructs 

allowed are clearly specified, and considerations such as contextual awareness are mostly non-issues.  

Secondly, there exists a clear set of rules for understanding the SQL language, as encapsulated in 

the standards, although extensions to the core SQL language are not generally platform-agnostic 

and implementation anomalies exist, discussed below.  Thirdly, the SQL language consists of 

constructs which can map from the relational algebra and to a set of machine instructions, rather 

than the allusions and statements present in natural languages, which means constructing the path 

from relational expression to machine instruction is much simpler than constructing the path to an 

action from an extract of natural language.  This precise point is also noted in Zelle and Mooney 

[43]. 

The SQL language does have a difficulty that is not present in natural language.  The dialect of 

SQL mandated by the ANSI-SQL standards is a core set of language directives which is specified to 

be implemented by all relational database management systems - to put it another way, it is known 

and finite.  However, there is no prohibition on database software implementing additional SQL 

language constructs above and beyond this core set of standards.  This is especially true for non-

relational or hybrid relational database platforms, for example the object-relational SQL standard 

[44, 45].  From a business perspective, this adds distinction, uniqueness and value to the product 

(the RDBMS) since it reduces interoperability, reduces transparency, and by increasing the 

complexity of doing so, reduces the incentive for consumers of these systems to migrate away in the 

future, thus preserving future revenue.  As a result, the major RDBMS systems operate on, 

essentially, the core ANSI-SQL standards but implement a superset of additional features to add 

this unique value.  In Oracle and later versions of IBM DB2, this superset is called PL-SQL, which 

includes the ability to interface much more closely with the underlying operating system and 

application programming languages [46].  In Microsoft SQL Server, this language is called Transact-

SQL, or T-SQL, which extends the core language by including, for example, features like XML 

integration [47].  The two extensions are not interoperable or compatible. 

To add confusion to the issue, sometimes even the core ANSI-SQL language specifications are 

construed and implemented differently: Oracle uses LIMIT to limit the results returned by a query, 

while Microsoft SQL Server uses TOP.  IBM DB2 allows joins to user-defined functions using a 

special TABLE() syntax, whereas elsewhere, the syntax is to reference the function as a table 

directly in the join.  Oracle Database allows CONTAINS(), which is unsupported by Microsoft SQL 

Server.  Most of the RDBMSs implement the information schema (the schema containing the 
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metadata about the other objects in the RDBMS) differently - MySQL and its variants use 

INFORMATION_SCHEMA and commands like SHOW, and Microsoft SQL Server uses a 

combination of an information schema and dynamic management objects.  Although ANSI-SQL is a 

widely-accepted standard, there is no effective external body, such as an enforcement agency or 

legal mechanism which can force adherence to these standards, and consequently the languages 

diverge as a result of both business considerations and software entropy, introduced over as the 

product lines continue to evolve. 

 

3.5.2 Tokenisation and the parse tree 

 

One of the first stages of parsing a database query is to identify the objects within the query and 

the operations upon those objects.  The implementation of this varies - in Microsoft SQL Server, it 

is split into two stages, parsing (checking the query is valid, with the output a parse tree) and 

algebrisation (also known as binding), with the output an algebrised tree.  The parsing stage has 

two functions - to check the query is syntactically valid, and to reconstruct the query in a form 

ready for binding to known objects and operations.  

Parse trees, also known as syntax trees, are concepts that exist outside of the database domain and 

are applicable to many context-free grammars (such as programming languages) including SQL.  

However, although the language itself is context-free, some context must exist between various 

adjacent (or non-adjacent) terms within a database query since, for example, a join must identify 

two or more tables to join and the columns to join upon, each of which will be tokenised as 

separate elements in the tree.  This relationship can be called a dependency.  Pitts [48] identified 

how the difficulties of compiling syntax trees are compounded by this issue of binding to adjacent 

objects and proposed a system of higher-level classes to represent these permutations together with 

theorems that govern recursion and inference when constructing these trees.   

In programming practice, these theorems are less abstracted.  For example, Lucene syntax [49], 

which underpins the Elasticsearch open-source framework, includes the facility to search using 

tokens - that is, to break apart the terms of a query into individually-identifiable elements that can 

be manipulated - then use various functions such as AND, OR and tools such as thesaurus 

extension lookups are implemented in SOLR [50] to support the QPL (Query Programming 

Language) language used in some widely-known search products.   

Efficient tree structures allow the accurate representation of sentences or queries for use further 

along the processing pipeline.  Many trees of this type are dependency-based - that is to say, nodes 

are all terminal, and dependencies can exist between words.  Covington [51] describes dependency 

parsing in some detail, where words in the phrase are allowed co-dependencies (analogous to 
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database queries) and presents a general algorithm for creating these trees.  Dependency trees are 

suitable for finite grammars, such as SQL (where the domain of all possible words is known), as 

detailed by Chomsky [52] in his discussion of reduction, simplification and dependency 

determination - Chomsky is also a very early source for depictions of early parse trees (for natural 

languages).  As opposed to dependency trees, there exist so-called constituent trees, where nodes 

may be non-terminal; in typical natural language, a non-terminal node may be a noun phrase under 

which exist various words in the phrase as terminal nodes, and so the noun phrase is descriptive 

rather than designating a specific word.  However, this does not apply in the most part for 

database queries since these queries are dominated by individual words which have inherent 

meaning, rather than phrases (there is little wastage in SQL syntax), hence the use of dependency-

type trees.   

Covington also points out that constituency-based trees and dependency-based trees have 

significant overlap if the 'x-bar' linguistic restriction is placed upon the latter [53] to force all non-

terminal phrases to have a single terminal node designated as its identifier, and so the difference 

becomes less important.  Fig. 3.1 shows a simplified example of a parse tree, and an associated 

execution plan, for a database query.  Note how the tree deals solely with the tokenisation and 

relationships between tokens, but the execution plan is the finished product of a binding and 

optimisation process that describes the operations that will take place against the database objects.  

By examining the components, it is shown how the execution plan is derived in part from the tree. 
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Fig. 3.1: Parse tree illustration – tokenised tree vs. execution plan 
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3.5.3 Query parsing in practice  

 

The implementation of the query parser in MySQL has two elements - a lexical scanner, and a 

grammar rule module [54].  The former is responsible for tokenisation - deconstructing the query 

into atomic elements.  The latter is responsible for analysing the flow of tokens (words) and 

identifying appropriate rules.  Tokenisation is a conceptually simple technique that can be done 

through the application of a series of rules.  For example, one rule could be to split a query into 

words based on some delimiter, such as a space.  Fig. 3.2 illustrates the basic tokenisation of a 

database query.  However, some other rules must come into play, as special characters are 

important - brackets, commas and other punctuation can alter the purpose of a statement within a 

query and should be included as discrete entities.   

 

 

Fig. 3.2:  Query tokenisation example 
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Both PostgreSQL and MySQL uses several functions written in C to implement this tokeniser - the 

entry point to the tokeniser for MySQL is the yylex() function in the file sql/sql_lex.cc in the 

MySQL source code [55], which uses GNU Flex, an implementation of the LEX language [56].  The 

general process is to hash each token, look up keywords and functions against pre-existing stores, 

and associate symbols to each token for use by the grammar rule module.  The grammar rule 

module takes the token stream as input and searches the stream in order to apply known rules 

(rules are available in sql/sql_yacc.yy, implemented by the Yacc compiler [57], which itself is an 

implementation of Backus-Naur Form (BNF) grammar notation - the compiler is implemented in 

C), doing this using the Bison utility [58].  Bison is a tool for converting 'annotated context-free 

grammar' into parse trees using a one-token LALR (look-ahead left-to-right) parsing technique.  

This technique was originally introduced by DeRemer [59] on the basis of the seminal paper on the 

LR parser by Knuth [60] on general LR parsers.   

The LALR(1) parser is a simplified left-to-right, bottom-to-top parser of a token stream that does 

not require backtracking to apply rules and is memory-efficient.  The resultant tree from the Bison 

output is stored in a parsing table for use by the next stage of the MySQL query optimisation 

process.  With minor variations in the entry points for the parser and the resulting data structures, 

this parsing process is identical for PostgreSQL.  It is not possible to assess the internal parser for 

some other RDBMS systems such as Oracle and Microsoft SQL Server due to the proprietary and 

closed nature of their source code.    

 

3.5.4 Current research 

 

Little evidence has been found that new query parsing techniques are being developed for use in 

RDBMSs; however, research into related problems using modified or existing query parsing modules 

is prevalent.  Query parsing in RDBMSs is a subset of the wider problem of semantic or natural 

language parsing in information theory, and this field is active with some overlap into applicable 

issues for database query parsing.  For illustration of this point, SPARQL [61] is a SQL-like 

language designed to allow queries across the so-called 'semantic web', to be used intrinsically 

within search engines to retrieve information based on some supplied predicates.  Queries in both 

SPARQL and SQL use common clauses such as SELECT to project results based on some criteria, 

however some translation from natural language inputs (such as searches) is required.  Better 

parsing methodologies compatible with SPARQL (which, by extension include SQL) have some 

applicability to SQL parsing [62, 63] since SPARQL is a superset of SQL, and in an older source, 

Zelle and Mooney [43] addressed the precise problem of mapping natural language queries to 

relational database queries through an experimental implementation in PROLOG. 



 

- 3 - 

 

 

There is some current appetite across research and industry for the modification of new query 

parsers to suit the purposes of the applications using query languages.  This is shown by the 

literature - Eldawy et al. [64] propose a system for spatial data handling that includes the injection 

of new features for spatial data types in the Impala parser.  Abstracting away from specific parser 

implementations, the ANTLR tool enables users to build new classes of parsers for cross-platform 

purposes (based on the parse tree methodology), and these have been used successfully in academic 

settings to build new SQL parsers both in relational and non-relational databases [65, 66, 67].  

There is also at least one commercial offering available for single-component parsers, such as the 

'General SQL Parser' suitable for implementation in various high-level languages [68].   

In a wider context, there is significant overlap in general string parsing in NLP and clause-based 

query parsing, as shown in Thenmozhi and Aravindan [69] who illustrate a method for identifying 

paraphrases within strings (as opposed to tokenisation of individual words through delimitation, as 

previously described) using support vector machines.  This method of grouping words could have 

applicability to improving the efficiency of the tokenisation process for database queries.  However, 

NLP is arguably more concerned with the problems of analysing natural languages rather than the 

parsing of programming languages and as such there is little continuing current research on parsing 

database query languages, which are subsets of the latter. 

Analysis of older research reveals some sources which shed light on how today's query parsers have 

been developed.  Ozsoyoglu et al. [70] described a method for query parsing based on recursive 

pattern-matching of input database queries using a match-bind process very similar to the modern 

process of parsing and algebrisation, but in the context of a proposal of a summary table-by-

example RDBMS.  Chamberlin et al. [71] discussed the System R 'precompiler' which abstracts the 

parsing, binding and access path selection elements from the critical path of a transaction for the 

faster execution of queries, an approach used in part today in Microsoft SQL Server when using 

execution plan stubs for ad-hoc queries [72].   

 

3.5.5 Query parsing limitations  

 

Query parsers used in RDBMSs are subject to some limitations, which can be examined by an 

analysis of the underlying theory of the methodologies for the parsing process and examination of 

adjacent, related research.   

The creation and evaluation of parse trees is fundamental to the query parser.  Li et al. [73] 

question the effectiveness of tree structures for language parsing on a general basis.  Although their 

research is in the contexts of recursive neural models and NLP, the method examined is the 

bottom-up generation of syntactic parse trees, an identical method to that used in parse tree 
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generation in MySQL and PostgreSQL RDBMSs.  The authors conclude that for semantic 

relationship classification (the pairing or grouping of sequential or close words in some given 

sentence to add meaning, as required for SQL clauses such as SELECT [column_list] or FROM 

[table_name]), recursive modelling using neural networks can outperform standard tree creation 

algorithms - the time to create these is reduced.  However, for discourse parsing, which also has 

similarities to SQL in that the input sentences tend to be short and there are relationships between 

sentences that need representation in the tree (in SQL, SELECT ... FROM ... WHERE), there were 

no significant differences found between the authors' new methods and the existing ones.  Further 

work extending Li et. al to the SQL language would be beneficial in clarifying further whether any 

benefits are possible. 

Fagin et al. [74] provide an overview of probabilistic versus rule-based approaches when discussing 

research into resolving ambiguities and inconsistencies in information extraction systems.  Parsing 

of relational database queries is achieved through rule-based systems which group token streams 

and bind the commands and database objects to the query operations and the database objects 

respectively, and Fagin et. al. note that limitations of such systems are the ad-hoc nature of rule 

creation and the overhead of rule maintenance (for example, the parser is subject to further 

development as the SQL language evolves).  Even if the rules are clearly defined, rule-based 

systems are not straightforward; Trim [75] states that tokens should be both a) linguistically 

significant and b) methodologically useful, and cites others [76, 77] in recognising that tokenisation 

is fraught with difficulties, such as recognising the differences between significant and insignificant 

whitespace, dealing with punctuation, and dealing with text that is improperly formatted.  

These limitations open avenues for exploring query parsing alternatives, or supplementary 

techniques for reducing the workload sent to the query parsing process through query pre-

processing.  Our research project introduces a novel method for doing so using multi-dimensional 

adjacency matrices for query representation, and a new method of inter-query similarity scoring 

using statistical methods to reduce plan cache recompilations.  

 

3.6 Object-Relational M apping Technologies 

 

3.6.1 Overview 

 

Database queries are generated from a variety of sources.  Increasingly, such sources include object-

relational mapping (ORM) frameworks, which are interpreters between object-oriented languages 

(such as Java) and the set-based reality of the relational model.  Using these tools, fixed SQL 

syntax is generated from method calls on the application side for use in the database engine, and 
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the database engine returns results which are translated into the appropriate application-side data 

structures for further use.   

Object-oriented programming methods and languages have become prevalent over functional 

methods and languages.  This has led to disparity between the class-method-interface model of 

object-oriented programming and the SQL query interface of the relational database; this disparity, 

termed object-relational impedance mismatch, has been charted in the literature [78, 79, 80] and 

proving the extent of this issue has been the focus of our previous research [81, 82, 83].  Ireland [78] 

classified this problem into four facets of a conceptual framework: paradigm, language, schema, and 

instance, and in response to the difficulties of overcoming the object-relational impedance mismatch 

problem, the industrial response was development of object-relational mapping (ORM) tooling.  

In response to this mismatch, intermediary ORM software agents were developed which include the 

automatic generation of queries using a supplementary object-relational map, allowing developers to 

call a method rather than write queries directly.  The language then uses this interface by calling 

methods, which the ORM then translates through its internal data model and into database 

queries, issued against the database query engine.  When the result set is returned, the ORM 

presents the result set in the specified format.  These tools have various restrictions which limit the 

use of conventional relational query tuning mechanisms – for example, a propensity for nesting 

rather than joining, row-by-row (also known as N+1) query patterns (discussed elsewhere), and 

eager fetching [84, 85].  These issues could be overcome with careful query tuning, but unlike 

traditional non-ORM queries, ORM queries are generally inaccessible for rewriting as they are 

generated at runtime and not stored inline, nor stored as functional code blocks like stored 

procedures.  This can present significant difficulties when tuning for system-wide database 

performance since there is little control over the query execution.  More generally, this use of 

object-oriented application development causes a clash between the object and the relational model 

- essentially, this is a structural incompatibility between the characteristics of an instance of an 

object and the data stored in a relation, such that the data in the table cannot be stored as 

attributes in the object on a permanent basis but must be populated via query.  As objects in 

object-oriented programming languages can be highly variable, so too can queries.  

 

3.6.2 Performance challenges from ORM  technologies 

 

Query performance tuning is a well-understood field in relational database management.  However, 

relational query-centred performance tuning approaches only work when the queries are accessible 

for tuning, that is when they are in a format which is compatible with query tuning mechanisms 

such as the cost-based optimiser.  Since the inception of relational database systems, the principal 

programming paradigm has gradually shifted to Object-Oriented Programming Languages (OOPL) 
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[86, 87, 88], where objects are created and destroyed during normal application workflows and 

consequently database queries are generated when needed, rather than called from a query library 

or stored procedure.   

Tuning the queries is often the first step in dealing with performance issues, with inefficiencies in 

poorly-performing query structures removed or rewritten to best match the tables present within 

the schema, as discussed in Chapter 2.  This is appropriate not just to generate low-cost execution 

plans, but because structural changes to schemas can result in processes dependent on the existing 

structure being unable to function – for example, the amalgamation of a set of sub-tables into a 

single table (denormalization) with the aim of reducing joins may require changes to all 

applications which use queries that call data directly from the original subset of tables [89].  While 

this limitation to the schema definition can be overcome by the augmentation of the schema with 

structures like views or indexes, finding and mitigating query inefficiencies instead of schema 

inefficiencies can result in swifter problem resolution, something that can be difficult to do with 

ORMs since ORMs generate queries automatically based on pre-defined rules and heuristics which 

are not necessarily geared to produce well-tuned queries [90].   

Query-centred performance tuning requires the queries to be accessible, which may be through 

storage within the application layer or definition within stored procedures, or otherwise subject to 

direct manipulation without significant impact to application development.  The limitations of 

ORM tools include but are not limited to non-parameterisation, meaning almost-identical queries 

can fill the RDBMS plan cache and cause unnecessary recompilations; eager fetching and the N+1 

problem [85]; the use of nested queries rather than joins, creating inefficient query execution plans; 

and excessively large queries which require more time to produce efficient execution plans than is 

available in the optimisation process.  These anti-patterns have ramifications in the eventual 

execution plan.    

ORMs are designed to mitigate many of the facets of the ORIM problem by the provision of an 

interface from the application layer to the data layer.  Despite this, ORMs are reported to have 

pervasive performance issues which arise as an artefact of their design [19].  Chen et al. [80] 

demonstrated that these anti-patterns can include the ‘N+1’ problem; this is where a query is 

implemented as a series of row-by-row implementations.  Although this has the benefit of being 

memory-efficient, from a database performance perspective this can produce an unwanted number 

of table or index lookups (or scans, or seeks) and can lead to an exponential overhead in query 

processing time and resource consumption.  By the designs of relational theory, set-based queries 

are preferred due to better efficiency and lower query cost [19, 80, 91, 92, 93].  Chen et al. [80] also 

describe the eager fetching problem (‘excessive data’) where extra columnar data is brought 

through to the application from within the query then discarded when the results are compiled.  
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They demonstrated a 71% increase in performance for a set of queries when mitigating this anti-

pattern.  

Cheung et al. [91] repeated this finding and reported the details of how ORMs can hide this 

behaviour from the user, for example by using pre-fetching.  The consequences of pre-fetching data 

include slower execution time, increased system resource use, and more data traffic.  The 

manufacturers of ORM tools also report adverse behavioural patterns with their tools; Microsoft 

Corporation [94] describe 8 different performance considerations in a popular ORM tool, Entity 

Framework that negatively impact query performance (7 of which occur before the query is 

executed).  They also discuss nested queries and offer commentary on the impacts of returning 

large data volumes on temporary data stores and overall execution time.  

Karwin [19] discusses SQL anti-patterns in general but specifically identifies issues with ORM-

generated queries.  Models (in the Model-View-Controller arrangement) are very closely coupled 

with database schemata; this means changes to the schemas can result in model incompatibilities.  

Another related problem is inheritance; if a class is given create, update and insert capabilities, 

subclasses can inherit from this class which can allow direct access to the database, reducing 

cohesion.  

 

3.6.3 Current research  

 

To date, no conclusive solution to the object-relational impedance mismatch problem has been 

identified, and research into this area is slow.  Instead, various researchers have proposed 

extensions and augmentations to the object-relational model to introduce new features or mitigate 

some of the disadvantages of using ORMs.  Malysiak-Mrozek et al. [95] investigated using fuzzy 

logic within ORM tooling - this could provide the advantage of retrieving probable sets rather than 

crisp sets of data, reducing the need for re-querying, at the possible expense of further data 

refinement in the application.  Raghu and Varma [96] propose using JSON as an alternative to an 

ORM layer, particularly in shared databases (databases with more than one application reading 

and writing from them).  In industry, there are over 70 ORM frameworks available for developers 

[97], indicating the maturity of ORMs as a perceived solution.  However, the impedance problem 

categorised by Ireland et al. [80] continues to exist, meaning further research into this area would 

be beneficial to help close the gap between the object and the relational worlds. 
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3.7 Information representation using graph theory  

 

One focus of the research in this thesis is the presentation of a multi-faceted theoretical solution to 

the problem of optimising RDBMSs for the efficient processing of queries originating from non-

traditional sources, such as ORM frameworks.  To achieve this goal, the internal representation of 

queries must be considered since, as established, serious representational and optimisation 

deficiencies manifest during the processing of queries from these sources.  At present, queries are 

parsed, tokenised and rearranged into trees, and the trees inform the design of the execution plan, 

which is translated into a series of machine-level instructions and executed.  Although this model is 

ingrained in various modern implementations, the consideration of an alternative form of 

representation for SQL queries is worthwhile in establishing whether such an alternative model can 

reduce the costs associated with parsing a query in the tree form.  To do this, an approach 

grounded in graph theory is detailed in Chapter 7 using multi-dimensional adjacency matrices to 

chart the 'shape' of a query and is used to make meaningful comparisons against other queries.  

This subsection of the literature review therefore introduces graph theory; and outlines and 

summarises historic and current research with a particular emphasis on the intersection of graph 

theory and information theory, particularly in terms of relational or structured information. 

Many problems can be modelled using graph theory, including database relations.  Consider a non-

empty, simple directed graph G with |V| vertices and a collection of |E| ordered binary tuples 

representing edges, or connections between the vertices, then a new relationship between any pair 

of vertices can be represented by the simple insertion of an appropriate relationship, or tuple, into 

E.  This allows for the retention of information within the graph.  For example, one may model two 

vertices as 'Customer' and 'Purchase', which correspond to rows in the appropriate database tables 

Customer and Purchase.  The directed edge from 'Customer' and 'Purchase' can represent the 

relationship 'has made a' - relationally, this may be stored as an entry in Purchase with a foreign 

key column for some unique Customer identifier to the primary key column of the Customer table.  

The direction of the edge also assists in indicating a many-to-one relationship - a customer may 

make many purchases, but each purchase has one and only one customer.  Thus, given a relational 

database of customer and purchase data, one could conceivably create a bipartite graph to model 

the relationships between each entity, by establishing a set of Customer(s) vertices as C (one vertex 

for each row in the table) and a set of Purchase(s) vertices as P.   

This is not an entirely new observation - Yannakakis [98] noted in 1990 that relational databases 

can be represented as 'directed hypergraphs', equating the vertices to the domains (columns) and 

the labelled edges as the rows.   Other columnar information can even be encoded as properties of 

the edge, such as the purchase amount as an atomic numerical value included in the tuple.  One 

can then use the properties of graph theory to derive meaningful analytics from this data; for 
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example, the average degree of the members of C is equivalent to the average number of purchases 

made by customers (as is the ratio |C|/|P|); |V| indicates the total number of customers; and |E| is 

the total number of purchases.     

To understand how graph theory can be used to represent queries, one may look to the research of 

the history of using graph theory for natural language processing (NLP), since query languages are 

a subset of natural languages.  Mihalcea and Radev [99] describe several applications for identifying 

key aspects of a text block, particularly keyword extraction (by the association of vertices in a 

graph with a ranking describing the importance of each vertex).  Keyword extraction is considered 

as a fundamental and critical technique within NLP, since doing so assists in the categorisation of 

the text block within some ontology [100].  By identifying more keywords within a block, the 

categorisation of the block can be attained in a more fine-grained manner.  Matsuo and Ishizuka 

[101] investigated the applications of keyword extraction including web page document retrieval, 

document clustering and text mining.  These applications are very similar to query parsing and 

categorisation of database queries.   

Given that vertices in a graph can contain properties, and these properties can be key-value pairs, 

and vertices can have edges connecting them that represent relationships, and that these edges can 

themselves contain properties in key-value pairs, then there is a clear parallel between relational 

database theory (mandating the existence of sets and relations) and graph theory, since a relation 

can be modelled as a graph, as described in the opening chapters of Robinson et al. [102].  This 

ability for graphs to contain data has led to the creation and popularity of graph databases, an 

alternative means of representing data to the relational model.  This is distinct from the storage 

and processing of relational structures or queries in graph form (queries being so-called 'L-paths' in 

the query language L across a hypergraph [98] - a hypergraph being a graph where an edge 

connects not just two, but any number of vertices).  Graph databases are essentially collections of 

key-value pairs, and relations between those pairs, stored and retrieved from an unstructured data 

store.  This raises questions about their suitability and efficiency when compared to relational 

databases for storing and querying unstructured data - Vicknair et al. [103], in a study on the 

efficiency of relational versus graph databases for storing graph data, noted disadvantages such as 

the proliferation of more database objects and greater storage space (by a significant percentage), 

although their overall results asserted the superiority of the graph database.  It is noteworthy that 

their comparison was on the full-text indexing capability only of the relational database rather than 

testing the relational model per se, and that the relational database comprehensively outperformed 

the graph database in all tests involving non-character data lookups. 

Hypergraphs are particularly important concepts when considering the intersection between graph 

theory and computer science.  Adjacency matrices are binary matrices in an [X . Y] form with the 

list of vertices along both axes whose intersections indicate whether two vertices are adjacent; that 
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is to say, connected by a node [104].  Conversely, incidence matrices record similar relationships but 

from the perspective of the edge - one axis is a list of vertices, and one a list of edges.  The 

existence of an edge emanating from a vertex is indicated by a 1 at the intersection.  Gallo et al. 

[105] note that hypergraphs can be modelled using incidence matrices and incidence matrices are 

correspondent with Boolean matrices.  Given that database queries can consist of hierarchical 

relationships then edges could then be drawn in two ways; firstly in a graph that is not a 

hypergraph, by associating the column to the table independently of any association from another 

vertex to the column; or by using a hypergraph and having an edge from another vertex to the 

vertex representing the column that also passes through the vertex representing the owning table, 

thus connecting both the parent and child vertices with the same edge that describes the 

relationship with the external association.  Both the former and latter methods are representable 

using adjacency or incidence matrices, which means that they are computable (as Boolean matrices 

are computable), and that this method could be used to represent the contents of any database, by 

extension. 

There are numerous studies and surveys that seek to extend the relational paradigm into graph 

database theory, and vice versa.  Reutter et al. [106] summarise how unions, JOINs and projections 

(equivalent to relational SELECTs) can be performed using a combination of types of regular-path 

queries (RPQs) against a graph database.  They note, alongside Yannakakis [98], that such an 

arrangement lacks an important algebraic property - transitive closure.  Transitive closure is a 

fundamental aspect of mathematics and relational algebra, defined as the minimal relation R on a 

set X that contains some defined sub-relation R'.  A transitive closure can, however, be modelled in 

graph theory as a sub-graph G' of a graph G that contains all the directed edges of G [107].  

Reutter et al. [106] assert that this property does not hold for RPQs arranged in such a manner as 

to enable unions, JOINs and projections, and as such weakens any purported equivalence between 

the relational model and graph theory, but is extendible with a special class of RPQs they 

introduce as 'regular queries'.   

Daniel et al. [108] addresses the problem of mapping conceptual database schemas to graph 

databases, albeit using a non-relational implementation as an example.  They note that graph 

databases do not have mechanisms for ensuring relational integrity, as captured in logical schema 

design (and enforced by physical schema implementation in RDBMSs).  They use a model for 

mapping UML (Unified Modelling Language) to graph database principles to address these 

problems which incorporates a metamodel layer.  This is the same conceptual design that informs 

ORMs and another example of the object-relational impedance mismatch problem, which implies 

the same kind of mapping problems [78] would result from the implementation of the meta-layer 

between the relational and the non-relational.  
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If a database query were to be modelled as a directed graph incorporating all the relational 

elements and operations of the query linked by relationships, then some method of similarity 

detection would be necessary to avoid heavy computational overhead when comparing query 

representations.  Zheng et al. [109] identified the difficulty of executing efficient similarity searches 

over large graph databases, particularly how noise can influence the effectiveness of this.  If 

representing queries, then noise could manifest as slightly different legal query arrangements, 

corruptions, or aliasing, or similar but non-identical queries.  This precise issue of the over-

production of similar but non-identical queries is a behaviour manifested by ORMs that sabotages 

the ability of the plan cache to operate effectively in current RDBMS systems and which could be 

effectively resolved by the fuzzy matching of query patterns.  Fuzzy pattern matching in graph 

systems, and the class of this problem, fuzzy morphism, is a general problem that has a substantial 

current and historical presence in the literature [110, 111, 112, 113] but no universal solution. 

 

3.8 Conclusions  

 

Relational database performance tuning appears to have been investigated thoroughly following the 

inception of RDBMS systems in the early 1970s; through the 1980s and early 1990s, progress was 

made by a variety of seminal researchers whose names reappear frequently in both the academic 

and trade literature; Codd, Date, Stonebraker, Elmasri, Navathe and others.  However, although 

RDBMSs have become entrenched as the fundamental design upon which structured data is 

managed and accessed by a large proportion of today's database systems, academic research from 

the mid- to late-1990s to today has veered towards areas in which, perhaps, more substantial 

improvements could be made.  What has come to light during the literature review is that research 

progress into relational database theory itself is now almost non-existent given that the underlying 

principles are well-understood. 

However, the context in which these RDBMSs run has changed significantly.  The trend towards 

object-oriented programming languages became a de facto standard, so that most development 

today is done in languages that are based on OO principles.  The repeated calls for further object-

oriented features to be incorporated into RDBMSs [107] fell mostly on deaf ears - object-relational 

impedance mismatch meant that large barriers between the two worlds had to be overcome.  The 

literature review has shown that performance tuning strategies that were sound for database 

environments running on known and finite sets of distinct queries are no longer entirely applicable 

to queries generated by ORM frameworks; and that providing efficient support for queries 

originating from these sources is a difficult and unsolved problem.  
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Through the review of parsing techniques, some initial exploration of query representation 

alternatives using graph theory were tested and found to have an academic pedigree, with related 

(but not identical) research into natural language parsing providing some evidence that the idea of 

representing queries as directed graphs may be feasible.  Some parallels (and distinctions) were 

noted between the set-theoretic and graph-theoretic models which have translated into theoretical 

barriers for other researchers, and which may impede progress.  

 

3.9 Chapter Summary  

 

This chapter presented several areas of research relevant to the problem of improving relational 

database query performance in the context of increased object-relational mapping framework use, 

increased volume, variety and velocity of data, provided an overview of both historical and current 

enquiries in this sphere.  The issue of query performance tuning in the context of database queries 

generated by non-traditional sources and several areas of research which may provide assistance in 

determining appropriate solutions were examined.   

In the next chapter, the steps for exploring the extent of the problem through primary research 

using a mixed-methods approach are described and the results from this research are presented. 
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Chapter 4 - Problem Investigation  

 

4.1 Introduction  

 

It is evident from the literature that there are potential opportunities to improve cost-based 

database query optimisers, which still use standard lexicographic parsing techniques and which are 

subject to the changing tides of object-oriented mapping frameworks, increased velocity, volume 

and variety of data, amongst other anti-patterns.  Existing techniques such as indexing, 

partitioning and sharding go some way towards improving performance but there is a research gap 

in the effective internal representation of queries at the optimiser level and potentially some value 

in developing the ideas of Chen [1] in creating truly dynamic schemas, beyond the limits of 

materialised views.  

This chapter describes the methodology and outcomes of the primary research undertaken to build 

upon the findings of the  literature review, and to investigate and verify some of the research 

objectives.   

This chapter first describes our qualitative investigation through surveying practitioners in the field 

on their database maintenance and usage experiences.  Thematic analysis was used to group and 

describe outcomes in a narrative fashion and identified areas for further investigation. 

Next, the design and implementation of semi-structured interviews is described to triangulate the 

findings from this survey, and information was gathered on database practitioners’ detailed 

experiences that helped validate and verify the previous findings, and which suggested several 

tangential directions for investigation. 

Next, the initial forays are described into proving or disproving the hypothesis that queries 

generated automatically from ORM frameworks can be less efficient than queries generated 

manually by practitioners, a consequential question that has arisen from the qualitative research 

findings.  Microsoft SQL Server 2014 is used, a relational database management platform, and a 

publicly-available sample database.  The findings were presented from this initial set of experiments 

at the IEEE International Conference on Consumer Electronics and Computer Engineering 2018 

[2]. 

Finally, this chapter details the experiments to reproduce some of the ORM anti-patterns that our 

literature review uncovered and which are described indirectly by our research participants.  

Experimental trials were undertaken against a real-life data set; weather buoys situated in the 

Pacific Ocean, which provided an interesting multivariate temporal data set upon which meaningful 

and lifelike database queries can be tested.  The attempts to reproduce these anti-patterns and the 
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findings were published in the Journal of Database Management, together with the survey findings 

[3], from which some of the material in this chapter is adapted.  

 

4.2 Domain Expert Investigation - Survey 

 

4.2.1 Survey investigation 

 

Given the secondary research findings on the extent of the anti-patterns exhibited by object-

relational impedance mismatch (ORIM), actioned by object-relational mapping (ORM) tools, this 

section aims to investigate if ORIM presents practical issues, and if so the extent of these issues, by 

the administration of a survey focused on object-relational mapping tools, delivered to an audience 

of database practitioners.  An investigation is mounted as to whether ORM-produced queries and 

ORMs in general cause performance issues in real-life database environments.   

A survey was designed, piloted and delivered, consisting of 18 questions for an audience of database 

practitioners with the intent to investigate several topics: the proportion of respondents who use an 

ORM, or use or administer database systems with ORM inputs; an estimation of the proportion of 

query traffic to relational database systems originating from ORMs; the experiences of the 

respondents in working with ORM query performance tuning, schema management, big-data-fed 

database systems and non-relational data stores; the beliefs of the respondents in relation to the 

effectiveness, compatibility and integrative ability of ORM tooling; and the opinions of the 

respondents on ORM-related paradigms such as object-oriented programming, Big Data, the Agile 

software programming methodology; object-relational (hybrid) systems and automation; all 

tangential topics which the secondary research findings showed may contribute to the influx of data 

and be responsible for the object-oriented programming methodology that warrants ORM use.  

 

4.2.2.   Survey design  

 

The questions were structured primarily using Likert scales, with a mixture of qualitative free-form 

textual information to gather further details without placing constraints on the responses of the 

participants.  This approach invited respondents to express their level of agreement or disagreement 

with several database-specific statements on a Likert scale with an additional neutral option to 

allow null answers to be statistically disregarded.  

Delivered via the instant-messaging platform Slack to a database-specific interest group, the survey 

returned 19 responses.  Relational database performance tuning is very specialist area so the total 
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available population was expected to be small; n = 19 in these circumstances compromises the 

statistical integrity of the output analysis, but the free-form output (open-ended responses to 

questions) remains valuable and basic statistical analysis can be indicative of sentiments.  Slack was 

chosen as a popular platform for specialist communities, enabling the targeting of a particular set of 

skilled individuals.  Responses were analysed as indicative samples of opinion using qualitative 

analysis, with free-text commentary from the respondents treated as significant and central 

contributions.  The methodology of thematic analysis [4, 5] is used to group the response data into 

categories and observations, create themes and formulate summary narratives.  

 Checks and balances were built into the survey design.  Given that the research questions were 

well-defined before the survey was issued, some risk existed that confirmation bias would skew the 

results if the questions were put in such a way as to seek affirmation of a pre-defined perspective.  

To prevent this possibility, a mixture of positive and negative question forms was used when 

positing statements, and at several points, questions were mirrors or alternative phrasings of others 

already answered.  This use of cross-questioning helped ensure construct and content validity and it 

was found to be effective during analysis of the resulting data with few contradictions in the 

results.  

 

4.2.3.  Survey pilot 

 

Before deployment, the survey underwent a pilot stage after which improvements were made to the 

internal consistency of the survey, refinement of the topics and refinement of the terminology based 

on feedback from several individuals.  The survey was designed to include additional free-form text 

fields to ensure the capture of meaningful, context-aware qualitative information to add value, 

hence the use of thematic analysis.  This approach was successful in uncovering additional 

information, useful when constructing the thematic codes. 

The survey questions are provided as Appendix A.   

 

4.2.4.  Analysis of results 

 

There are several stages of thematic analysis [4], none of which are prescriptive but provide a 

coherent process to analysing qualitative data.  The survey was designed to capture both 

quantitative and qualitative responses and was analysed by using all six stages of thematic analysis, 

from data familiarity through to thematic mapping.  

The preliminary stage, in accordance with Clarke and Braun’s approach [4], focuses on semantic 

analysis – the extraction of the key information about what is said, or written, rather than latent 



 

- 16 - 

 

 

analysis of the underlying meaning.  The responses from the survey were analysed in this way, 

resulting in a preliminary codification of the data.      

In the next phase, refinement of the codes and re-arrangement of the themes took place to simplify 

the findings.  This was accomplished by de-duplicating codes, re-arranging them into a different 

configuration of themes, and rephrasing the codes to remove unnecessary detail.  At this stage, 

latent analysis began to take prominence over semantic analysis.  Table 4.1 shows the outcome of 

this phase.  

 

Table 4.1:  Final codification of the survey results 
 

 

 

Next, by examining the codification and theme groupings, simplifications and linkages of the 

concepts resulted in the interpretative creation of a thematic map.  Links are drawn between 

concepts to show the interplay of the themes.  Fig. 4.2 shows the thematic map with themes as 

ellipses, sub-themes as rounded rectangles, and the links and insights associated with them. 
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Fig. 4.2: Survey outcomes as a thematic map 

 

The final stage was to construct narratives from the thematic map, using the notarised codes as 

supporting material.  These narratives are presented below, and draw from the codifications, 

thematic map and the supporting literature.  

 

4.2.5. Discussion of Findings 

 

• Theme - ORM  Use   

The results showed that ORM uptake amongst organisations linked to respondents in the survey is 

approximately 60% and of those, around 25% of traffic is thought to originate from ORM tools.  

Consequently, ORMs are responsible for a sizable minority of query traffic.  ORMs are held to be 

generally compatible with database scalability designs such as normalisation, but notably 

incompatible with some features of the RDBMS, such as re-use of plans within the procedure cache, 

good matching with indexes, and adherence to query structures that create efficient execution plans 

(such as JOINs).      

 The use of ORMs could be evidence that tuning databases and database queries is difficult, with 

the path of least resistance seen as the use of ORMs to abstract query design to an interface layer, 

although this finding is countered by some evidence from the comments received in the survey that 

there are design and interaction difficulties inherent when interfacing with ORMs, backed up with 

the paradigmatic differences outlined by Ireland et al. [6].  The difficulties of tuning ORMs are 

reinforced by a general perception amongst practitioners (67% detracting views) that this is the 
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case, alongside the negative consequences (anti-patterns) that arise when using them.  

 

• Theme - Education, Awareness and Perception  

There is some evidence of the view that the perceptions of ORMs as being difficult to tune are 

reinforced by a lack of awareness of how ORMs operate, or how they are configured, and that 

mutually the lack of awareness and education (of both administrative practitioners and users, or 

developers) contributes to the misconfiguration of ORMs – 82% of respondents had 3 or more years 

of experience, but only a third use ORMs regularly in their roles.  There is a widespread perception 

that ORMs cause negative performance implications evidenced in both the free-form text responses 

and the statistics (no respondents agreed that ORMs were straightforward to tune), with numerous 

examples provided, and this could contribute to the minority use of this technology.    

The responses suggest that the proliferation of ORM tools is in part consequential to a lack of 

awareness amongst the development community of the native tooling available within relational 

database management systems; for example, the use of stored procedures as interfaces, or queue-

based messaging systems built into the product suite.  However, this view could be biased by a 

cultural perception, evidenced in literature [7, 8], of a disconnection between development and 

administrative technical communities, manifest by the administrative audience of the survey.  

 

• Theme - N egative ORM  Behaviour  

 The chief finding was that query anti-patterns are held to be the causes of poor query performance 

in the database layer, and that this is exacerbated, with reference to the other themes, by a lack of 

awareness in database performance optimisation amongst developers, by lack of awareness of the 

native features of RDBMS systems, and by the difficulty of tuning ORM tooling.  The exhibited (or 

perceived) behaviour of the ORM tools correlated with a generally pessimistic view of the role of 

ORMs in the future of database interaction, although contradicted somewhat by support for further 

automation.  It is noteworthy that although 57% of respondents agreed automation had a role in 

the future of database performance tuning, only 8% (2 respondents) agreed that ORMs formed part 

of that role.  

 

• Theme - Future Outlook  

 Automation of query- and database performance tuning was suggested both by the measured 

question responses and by ad-hoc suggestions in free text responses, building on prior work in the 

literature addressing more effective database workload management [9].  It was felt that the future 

of performance tuning was underpinned by automation, although emphatically not by ORMs.  This 
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suggests that ORMs are perceived to have reached a peak performance level, and that the future of 

database interaction may lay in a different direction.  

 Several core concepts, such as performance, confidentiality, availability and flexibility were rated 

for importance on a scale of 1-10, with 10 as the most important.  One notable result was that 

performance was rated at 8 out of 10, and flexibility at 6 out of 10, indicating performance to be a 

more important issue than flexibility, despite a flexible approach being desirable to deal with ORM-

related queries.    

  

4.3 Domain Expert Investigation - Interviews 

 

4.3.1 Interview context 

 

Three semi-structured interviews were carried out with chosen database professionals to collect 

opinions on both the current performance tuning challenges and future directions for database 

performance research and implementations.   

In keeping with the inductive reasoning approach, these interviews were narrative, in-depth 

interviews conducted on loose lines of enquiry derived from the major themes that emerged from 

the survey (the triangulation method).  Taylor et al. [10] note that this style of interview is, ‘... 

modelled after a conversation between equals rather than a formal question-and-answer exchange.’  

This is an appropriate style where rapport is established between the participants and non-directed 

conversation occurs to bring out opinions and other data for later analysis. 

Interview audio was recorded in full and transcribed for analysis.  The method of information 

analysis was carried out through the extraction of opinions and ideas expressed by the interviewee 

using codification, with the assistance of the software package NVivo, and thematic analysis by 

hand, and the categorisation of these, alongside the survey output, formed a series of short 

conclusions and directives following an inductive narrative analysis approach.  The design of the 

semi-structured survey, the analysis of the same and the results are discussed below. 

 

4.3.2 Interview design 

 

The survey output indicated four major themes that would be useful to focus upon in the 

interviews.  Therefore, the interview questions should link to these four themes where possible.  In 

the table below, loose question definitions are provided, inside three major categories alongside a 

map to one or more themes (education/training is integrated across the three major categories).  
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Performance tuning, as a tangential topic, is also explored (marked as [additional topic] in Table 

4.3).  These question structures were followed during the interviews. 

 

Table 4.3:  Mapping interview questions to survey themes 

Category Question Survey Themes 

ORMs What do you know about ORM products? 

(define if necessary) 

ORM Use 

What kind of query patterns etc. do you 

notice in systems fed from ORMs? 

Negative ORM Behaviour 

What do you think the general perception is 

within the industry around ORMs? 

Negative ORM Behaviour / Education, 

Awareness & Perception 

o   Why do you think this is the case? 

Negative ORM Behaviour / Education, 

Awareness & Perception 

Do you think that ORMs will get better over 

time?  

ORM Use / Negative ORM Behaviour 

Do you think SQL is an attractive language 

for application developers? 

ORM Use 

(if appropriate) What specific performance 

issues if any have you observed with ORM 

systems and SQL databases? 

Negative ORM Behaviour 

What do you know about ORM products? 

(define if necessary) 

ORM Use 

What kind of query patterns etc. do you 

notice in systems fed from ORMs? 

ORM Use / Negative ORM Behaviour 

Performance 

Tuning 

In your professional practice, is database or 

query performance a hot topic? 

Education, Awareness & Perception 

 

What kinds of tuning do you have to bear in 

mind (as a developer) 

(additional topic) 

 o   Alternatively, what kind of database-wide 

tuning methods do you use (as a DBA)? 

(additional topic) 

Has tuning become more difficult as your 

systems grow? 

(additional topic) 

Are SQL databases the best solution (in your 

opinion) for your applications? 

Education, Awareness & Perception / 

Future Outlook 

How easy do you find it to performance-tune 

queries that come from ORMs? 

(additional topic) 

 o   Alternatively, what barriers do you find 

when performance-tuning ORM queries? 

(additional topic) 

Future Outlook What impact do you think Big Data has had 

on managing or working with relational DBs? 

Future Outlook 

What challenges are there around 

managing/working with data from the 

Internet of Things? 

Future Outlook 

Do you think relational databases have a 

strong role to play in the future? 

Future Outlook 

What gaps do you think nonrelational 

databases play in managing business data? 

Future Outlook / ORM Use 

Do you believe the role of the database 

administrator is over? 

Future Outlook 

What impact do you think cloud will have on 

how we manage data going forward? 

Future Outlook 

Have relational databases reached peak 

performance? 

Future Outlook 

What changes would you like to see to 

relational database systems to enable them to 

meet the challenges of the future? 

Future Outlook / Education, Awareness 

& Perception 
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4.3.3 Analysis of interview findings 

 

The interviews were recorded with the permission of the participants.  Transcription took place 

through an AI-augmented speech-to-text engine [11]; then the transcript was analysed by codifying 

specific phrases, sentiments and assertions disclosed by the participants into a range of 12 different 

broad topics with the assistance of the NVivo software [12].   The frequency on which these topics 

appeared is displayed in the graph in Fig. 4.4. 

 

 

Fig. 4.4: Frequency breakdown of codified survey topics 

 

The phrases or text segments were analysed and associated with each topic.  It was determined 

that sentiment analysis was not appropriate since the topics are largely technical and factual in 

nature; the initial attempt at sentiment analysis (manually) resulted in over 50% of the codified 

material falling into a neutral category, and with the relatively low numbers of codified statements, 

the risk is run of overfitting the data.  Instead, a narrative approach was adopted and for each 

category, some selected statements were grouped which indicate a strong sentiment for each 

category, and the implications of this are discussed in the following section.  These groupings are 

presented in more detail in Appendix B. 
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4.3.4 Narrative analysis 

 

In keeping with the pragmatic, inductive approach chosen for the research, qualitative inductive 

narrative analysis was selected as an appropriate technique for analysing the interview output.  

Although more often used in the social sciences than in the hard sciences, narrative analysis has 

been shown by some researchers to be applicable in the latter; this choice emulates the example of 

Alvarez and Urla [19] who make a strong argument for the use of narrative analysis in 

requirements-gathering for an ERP software installation in applying this to the technical field at 

hand.   

The inductive approach is adopted of attempting to form an overall picture of the current state of 

ORM-driven SQL development and administration issues as reported by the participants with 

specific reference to each code above. 

 

SQL 

The participants were generally positive about SQL.  Echoed in several comments were sentiments 

that the language is easy to learn; intuitive; universal; and can result in shorter code than object-

oriented counterparts.  There was some evidence that learning more complex structures and 

components in SQL is seen as a bar to progress. 

 

Query Performance Improvements 

Query performance was viewed and reported by the participants as being a primarily DBA-related 

concern; that the database should be performant irrespective of the users’ commands.  This was 

shown in an example of one particular training session.  The participants reported long delays when 

working with big data, and organisational frustrations if data analyses were unavailable on demand.  

One participant reported on-premise (legacy) servers as ‘feeling a lot slower’. 

 

Query Accessibility 

Participants made observations that queries are easily written for many cases; accessibility is less of 

an issue than it could be, but with improved training and knowledge the efficiency could be 

improved.  Observations also included comments that writing SQL in IDE tools doesn’t yield the 

expected range of real-time help that one would get in other languages. 
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ORM s 

Participants had a mixed view on ORMs; some participants felt ORMs were unnecessary, that they 

felt more comfortable writing queries themselves; another participant reported ORMs as ‘helpful’ in 

this regard.  Participant knowledge and experiences of ORMs was quite light with most unaware of 

them. 

 

NoSQL 

Reports on NoSQL and the performance frustrations in working with SQL stores was particularly 

evident.  One participant complained that they should not be expected to remember the schemata 

of a structured database when moving rapidly between different data stores.  Others reported that 

with the different types of unstructured data in use, using solely relational databases ‘doesn’t make 

sense’.   

 

Future of Data 

This was a topic upon which all participants had some strong sentiments.  Participants expressed 

doubt that SQL is particularly popular and pointed out examples where other languages augmented 

the capabilities of SQL and, by extension, the relational model.  Cloud-based systems were better 

able to service their needs in many cases.  The view was that traditional relational database 

provision should be extended to include non-relational sources and capabilities; however one 

participant disagreed, stating, ‘…unless something really dramatically comes and takes away 

[relational] databases, I … think they’re here to stay’. 

 

Developers 

There was limited data for this code, but the sentiments expressed were that developers are 

generally non-expert with SQL and are more used to working with APIs; consequently they needed 

assistance writing performant queries without access to APIs e.g. via an ORM. 

 

Data Governance 

One particularly incisive comment on data governance was an observation by a participant that 

their data structures were by-and-large undocumented; that there is no way of establishing data 

provenance, and that governance is lacking.  To wit: ‘…I don’t want to use data I’m not going to 

trust, or I can’t fully, fully account for the kind of … the lifeline where it’s come from.  Because I’d 

rather not have the data at all.’ [emphasis added].  This is particularly striking and is one example 

of evidence for a gap in data management strategy within organisations; it may also be 
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symptomatic of the distrust and apathy for relational database management systems expressed 

elsewhere. 

 

Data Analysis 

Numerous examples were given by participants on how timely data needs to be, and how relational 

systems sometimes cannot meet this need.  This requirement for timeliness and efficiency was 

evident in multiple comments and would appear to be generally indicative of the frustration in 

performance efficiency evidenced so far.  It was noted that SQL is a comparatively easy language to 

learn, and that data analysts generally do not care where the data comes from providing it is 

accurate and timely – ‘I don’t want [the database] to take hours for me to get the data that I need’.  

One particularly insightful comment noted that companies are only now starting to use data in a 

way they have not before; that the value of data is in the use, not the collection.  This could point 

the way to increased, targeted data collection and demand for data analysts who need efficient and 

performant data storage systems. 

   

Cloud Data Analytics 

In the most part the view of cloud database systems was positive.  Participants noted that 

scalability and performance was often better; that the actual location of the data was mostly 

irrelevant to them; however, one dissenting opinion expressed concern over ownership and 

responsibility for the data if looked after by a third party.   

 

3 Vs of Big Data 

Data volume was a theme that re-occurred throughout participants’ responses.  It was noted with 

specific examples given that large volumes of data correlated with slower performance; that larger 

variety of data meant analysts had to use several different systems to get the answers they needed.  

Commentary across various codes was indicative that volume, variety, and velocity of data is 

constantly increasing, and there is a need to address this. 

 

4.4 Conclusions from Domain Expert Investigations 

 

Triangulating the conclusions from the narrative analysis of the survey output and the thematic 

interview analysis, the following conclusions are reached: 
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• The survey showed ORM use was moderate and held to be compatible with scalability; the 

interview output showed mixed opinions with little data to support this view.  The 

preference of one interview participant to write their own code corresponds with some 

observed anti-patterns of the ORM noted in the survey. 

 

• The prolificacy of ORM systems to the lack of awareness in the database and developer 

community on the tools and techniques already available in relational database systems are 

linked; this correlation is borne out in the interview findings, where it was repeatedly 

asserted that developers tend to have basic- to intermediate-level querying abilities, and 

that there is a lack of focus on ensuring acceptable performance.  This view is echoed in the 

literature [7, 8] and indicated by frequent reports of anti-patterns [ibid., and 6].   

 

• Both the survey outputs and the interview outputs agreed that query performance is a 

current concern.  The survey contraindicated ORMs as a potential solution, whereas the 

interview participants expressed little opinion on ORMs in particular; the survey 

participants pointed to automation as an answer whereas the emphasis from the interview 

participants was scalability and simplicity; both of which are achievable by automation, 

especially in data integration and refactoring.  Survey respondents rated performance 

higher than flexibility, but interview participants rated schema flexibility as a key concern. 

 

Relational database systems appear to be somewhat popular and used extensively with positive 

reports from the industry on their efficacy for some use-cases.  However, the evidence is that with a 

focus on extracting value from data analysis, with an increase in the volume, variety and velocity of 

data collected by organisations; with the heterogeneity of data making flexibility of data schemata 

difficult to implement and consequently impacting relational database query performance, that 

there is more of a need to ensure relational database models are suitable for the changing 

requirements of data-driven organisations.  Frustrations in the mismatch of relational systems to 

the query accessibility required by the developers and analysts within organisations were evident in 

both the primary research outputs.   

The outcomes exposed highlight a need to improve flexibility and performance as key priorities 

within the relational database space; in the next section, some of the performance anti-patterns 

noted by the respondents are examined and highlighted, and attempts are made to replicate and 

verify the extent to which these can appear in industrial systems. 
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4.5 Experimental Investigations   

 

Alongside the literature review and the primary qualitative research with industry professionals, it 

is sought to determine firsthand through experiment whether the ORM anti-patterns described can 

be replicated in current RDBMSs.  These suppositions are based on the outcomes of the literature 

review and domain expert investigations, particularly that it is expected, based upon these 

outcomes, that ORM platforms will exhibit performance anti-patterns when subjected to scrutiny.  

This section is split into three subsections – in S.4.5.1, the investigation and outcomes from testing 

are presented via analysing the impact of object-relational mapping frameworks through the 

investigation of single queries on a sample Microsoft dataset.  In S.4.5.2, more comprehensive 

testing of ORMs vs. traditional queries is presented by using a real-life data set (sensor data from 

Pacific Ocean seaborne buoys).  Finally, the experimental outcomes are summarised in S.4.6.   

 

4.5.1 Investigation of traditional queries vs. ORM  frameworks   

 

In this section, the ‘Contoso University’ Entity Framework example provided by Microsoft 

Corporation [13] is used against the Microsoft SQL Server 2014 RDBMS platform to seek to 

replicate and illustrate selected adverse effects caused by ORM-generated queries, as informed by 

the literature review and indicated by the qualitative primary research.  In the context of a 

University, the following operations occur: add a student; list students; edit a student; search for a 

student; delete a student; and analyse the SQL generated by these processes.  The application is 

based on the MVC design pattern with the ORM acting as the database interface.  The outcomes 

are then examined to determine any suboptimal behaviour displayed by the ORM and, where 

possible, show how any performance concerns can be mitigated by a non-ORM approach, or by 

tuning the database or ORM. 

It is important to note that for reasons of space, this demonstration is scoped to focus on some 

issues that emerge from single-row database calls.  It is not intended, for example, to demonstrate 

the N+1 problem or show how ORM queries can fill the plan cache.   

 

Adding a student 

To begin, the first action is to add the student John Smith, together with their enrolment date, to 

the database of students using a straightforward web form.  In the background, the ORM generates 

an INSERT statement.  Notably, this statement is parameterised (the literals are passed as @0, @1 

etc).  An interesting point is that the student was inserted into the Person table, not the Student 

table, and consequently the hire date is set to NULL since it does not apply.  The ‘Discriminator’ 

field is also interesting as it is not set by the user of the web application – when the table contents 



 

- 27 - 

 

 

are manually checked, it is observed that ‘Discriminator’ was set to ‘Student’.  This points to 

problems with the database design, but in terms of the SQL statement itself, it is correctly 

parameterised and does not display any performance problems. 

 

INSERT [dbo].[Person] 

 ([LastName], [FirstName], [HireDate], [EnrollmentDate], [Discriminator]) 

VALUES (@0, @1, NULL, @2, @3) 

 

 

Getting a list of students 

In this example three more students have been added to make four in total.    The generated SQL 

is the code used to fetch this list – there are three items of data for each student, their last name, 

first name and enrolment date.   

 

SELECT TOP (3)  

    [Project1].[C1] AS [C1],  

    [Project1].[ID] AS [ID],  

    [Project1].[LastName] AS [LastName],  

    [Project1].[FirstName] AS [FirstName],  

    [Project1].[EnrollmentDate] AS [EnrollmentDate] 

    FROM ( SELECT [Project1].[ID] AS [ID], [Project1].[LastName] AS [LastName], 

[Project1].[FirstName] AS [FirstName], [Project1].[EnrollmentDate] AS 

[EnrollmentDate], [Project1].[C1] AS [C1], row_number() OVER (ORDER BY 

[Project1].[LastName] ASC) AS [row_number] 

        FROM ( SELECT  

            [Extent1].[ID] AS [ID],  

            [Extent1].[LastName] AS [LastName],  

            [Extent1].[FirstName] AS [FirstName],  

            [Extent1].[EnrollmentDate] AS [EnrollmentDate],  

            '0X0X' AS [C1] 

            FROM [dbo].[Person] AS [Extent1] 

            WHERE [Extent1].[Discriminator] = N'Student' 

        )  AS [Project1] 

    )  AS [Project1] 

    WHERE [Project1].[row_number] > 0 

    ORDER BY [Project1].[LastName] ASC 
 

 

Considering this data comes from the Person table, a shorter, and potentially more optimal SQL query 

can be assembled: 

 

SELECT TOP 3 LastName, FirstName, EnrollmentDate  

FROM Person  

WHERE ID > 0 AND Discriminator = ‘Student’  

ORDER  BY LastName ASC; 
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Note this differs significantly from the query generated by the ORM tool, which displays certain 

characteristics: unnecessary column fetches (eager fetching), namely ‘CU1’ and ‘ID’; unnecessary 

nesting; unnecessary sorting (the inner ORDER BY ID is overridden by the outer ORDER BY 

LastName); and poor alias names, decreasing the readability of the query.  Even if a subquery was 

necessary, this could have been achieved by an explicit JOIN rather than potentially requiring the 

parsing of another query. 

Now the execution plans of the ORM-generated query and the query proposed are compared to 

analyse the impact.  These execution plans are shown in Figs. 4.5 and Fig. 4.6: 

 

 

Fig. 4.5: Execution plan for the ‘list students’ query 
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Fig 4.6: Execution plan for the non-ORM query for listing students 

 

It is evident that the query optimiser has many more steps to execute the query.  However, the 

optimiser has also recognised the simplicity of the queries, and this is reflected in the costs and 

resources used to execute them.  Particularly, in addition to the comments above on the query syntax: 

• The ORM query occupies 32KB in the plan cache against the proposed query at 24KB.  At 

scale, this occupies plan cache space that could be used by other queries, negatively affecting whole-

system performance. 

• The ORM query underestimates the number of rows which will be returned whereas the 

proposed query is accurate.  This can be an issue in generating well-performing execution plans at high 

volumes.  Similarly, the estimated row size is inaccurate.  Using database statistics with the ORM 

query could help remedy this situation. 

• The ORM query uses an index scan whereas the proposed query uses an index seek.  While 

this makes no difference in the case of low data volumes, this scales badly, with seeks on an index 

occupying much fewer resources than scans in every case. 

 



 

- 30 - 

 

 

Editing a student 

In this example student details are edited, changing the last name and enrolment date for a single 

student.  The output is, like the exercise in adding a student, parameterised correctly, with a simple 

and effective UPDATE statement.  In terms of performance this is an optimal query and so needs no 

rewrite. 

 

UPDATE [dbo].[Person] 

SET [FirstName] = @0, [EnrollmentDate] = @1 

WHERE ([ID] = @2) 

 

Searching for a student 

  In this case, there are two queries executed.  The first query fetches the count of results, and the 

second query is an  adaptation of the query to fetch all students.   

 

SELECT  

    [GroupBy1].[A1] AS [C1] 

    FROM ( SELECT  

        COUNT(1) AS [A1] 

        FROM [dbo].[Person] AS [Extent1] 

        WHERE ([Extent1].[Discriminator] = N'Student') AND (([Extent1].[LastName] 

LIKE @p__linq__0 ESCAPE N'~') OR ([Extent1].[FirstName] LIKE @p__linq__1 ESCAPE 

N'~')) 

    )  AS [GroupBy1] 

 

SELECT TOP (3)  

    [Project1].[C1] AS [C1],  

    [Project1].[ID] AS [ID],  

    [Project1].[LastName] AS [LastName],  

    [Project1].[FirstName] AS [FirstName],  

    [Project1].[EnrollmentDate] AS [EnrollmentDate] 

    FROM ( SELECT [Project1].[ID] AS [ID], [Project1].[LastName] AS [LastName], 

[Project1].[FirstName] AS [FirstName], [Project1].[EnrollmentDate] AS 

[EnrollmentDate], [Project1].[C1] AS [C1], row_number() OVER (ORDER BY 

[Project1].[LastName] ASC) AS [row_number] 

        FROM ( SELECT  

            [Extent1].[ID] AS [ID],  

            [Extent1].[LastName] AS [LastName],  

            [Extent1].[FirstName] AS [FirstName],  

            [Extent1].[EnrollmentDate] AS [EnrollmentDate],  

            '0X0X' AS [C1] 

            FROM [dbo].[Person] AS [Extent1] 

            WHERE ([Extent1].[Discriminator] = N'Student') AND 

(([Extent1].[LastName] LIKE @p__linq__0 ESCAPE N'~') OR ([Extent1].[FirstName] LIKE 

@p__linq__1 ESCAPE N'~')) 

        )  AS [Project1] 

    )  AS [Project1] 

    WHERE [Project1].[row_number] > 0 

    ORDER BY [Project1].[LastName] ASC 
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The difference between the listing and the search is an addition of another WHERE filter in the inner 

SELECT: 

 

… AND (([Extent1].[LastName] LIKE @p__linq__0 ESCAPE N'~') OR 

([Extent1].[FirstName] LIKE @p__linq__1 ESCAPE N'~')) 

 

Where the test was simply to search for the string ‘Smythe’, the clause constructed uses the LIKE 

operator instead of the equals operator, specifically escaping the ~ sign (including it in the LIKE 

query).  This implies the search would work for substrings also.  There are also two parameters, 

@p__linq__0 and @p__linq__1.  It is difficult to see what these parameters were, but by looking 

at the properties of the SELECT component of the execution plan, it is determined that they are both 

equal to ‘%Smythe%’. 

There are three issues here:  first, that both parameters were identical, increasing the complexity 

of the plan when one would do (there are two since they map to first and last name, but there is only 

one input field).  Second, that the data was wrongly typed with a 4,000-character maximum.  Third, 

that the ESCAPE clause was unnecessary since the string did not contain a tilda.   

The SQL may be rewritten like so: 

 

DECLARE @searchString VARCHAR(255) = 'Smythe' 

SELECT LastName, FirstName, EnrollmentDate 

FROM Person  

WHERE Discriminator = 'Student'  

AND ( LastName LIKE ('%' + @searchString + '%')  

OR FirstName LIKE ('%' + @searchString + '%') ) 

ORDER BY LastName ASC; 
 

Let us now examine the simplified execution plans (Figs. 4.7 and 4.8, below): 

 

 

Fig 4.7: Execution plan for the ORM search query 
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Fig 4.8:  Execution plan for the non-ORM search query 

 

As when listing students, these plans are significantly different, and the same criticisms of the ORM 

query for getting a list of students apply here.  However, the addition of the search predicate has 

altered the main operator in the proposed plan from a seek to a scan, since no appropriate 

supplementary index aligned with the FirstName or LastName columns exists, and the search predicate 

is bracketed with wildcards precluding an alphabetic scan.  It is also unclear whether the Contoso 

search facility is deliberately designed to use wildcards or whether this behaviour is added by the ORM 

– if the latter, this is a worrying development since this does not reflect the original intent of the 

developer. 

 

Deleting a student 

As with the UPDATE statement when editing a student, deleting a student is also a streamlined 

process with an optimal query generated. 

 

DELETE [dbo].[Person] 

WHERE ([ID] = @0) 

 

The performance can be tested, in terms of time and number of read operations, of each task that 

has been demonstrated.  The results are shown in Table 4.9. 
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Table 4.9:  Performance statistics for Contoso queries 
 

Task Source 
Logical 

reads 

Physical 

reads 

Parse / 

compile 

(ms) 

Elapsed 

(ms) 

Add 
ORM 2 0 0 13 

Non-ORM - - - - 

List  
ORM 2 0 6 135 

Non-ORM 2 1 3 53 

Edit 
ORM 2 0 4 0 

Non-ORM - - - - 

Search 
ORM 1 4 4 290 

Non-ORM 2 0 1 118 

Delete 
ORM 19 0 7 19 

Non-ORM - - - - 

 

It is noted that the performance differences are as pronounced as the differences between the query 

syntax structure and more so than the differences in the execution plans.  From the table above, there 

is a significant difference in query duration between each ORM and non-ORM query pair for operations 

based on SELECTs – 135ms/53ms and 290ms/118ms.   

Although it is recognised that the examples used here would need to be scaled to a real-world context, 

these results are indicative of slower performance for the ORM query.  There is also a small but 

noteworthy difference in the time taken to parse and compile with the larger plans (ORM) taking 

longer to compile – 6ms/3ms and 4ms/1ms. 

In summary, the observed negative behaviour of the ORM from this demonstration can be 

characterised as follows.  Suggested mitigations in italics are supplied for each characteristic but note 

that these mitigations will in most cases require human intervention, which in turn requires an 

examination of the SQL generated by the ORM tool: 

 

• Eager fetching of unnecessary columns (CU, ID) 

 o Fetch only the columns necessary for the query 

• Unnecessary nesting (subqueries) 

 o Avoid sub-querying unless necessary, use WHERE conditions or JOINS instead 

• Additional sorting (inner ORDER BY) 

 o Do not use inner ORDER BY unless also using TOP / LIMIT 

• Poor code readability (particularly aliases)  

 o Use aliases only when syntactically required  

• Poor mapping of parameters to literals (search criteria) 

 o Use a one-to-one relationship between input parameters and SQL parameters 
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• Larger execution plan size, decreasing size of plan cache for all queries (32KB/24KB, 

40KB/32KB)  

 o Strive to simplify queries to lower the size of the plan 

• Unnecessary SQL constructions (nesting, ESCAPE operator)  

 o  Only use the minimum structures and operators to accomplish the goal 

• Duplicate code (when fetching a count of rows and the row contents)  

 o  Use functions such as ROWCOUNT or count the rows in the application 

• Apparently slower performance both during parse/compile and execution phases 

 o Simplification of the query will lead to simplification of the execution plan 

 

 

4.5.2.  Investigating query anti-patterns using Pacific Ocean sensor data  

 

The purpose of these experiments is to triangulate upon the findings of the survey, particularly 

around the finding that practitioners experienced performance issues when dealing with ORM-

generated queries. This section investigates whether ORM tools may generate queries which have 

adverse performance effects when compared to queries written by a subject matter expert.  

 

Test Data 

For testing, the El Nino data set from the Pacific Marine Environmental Laboratory in Seattle, 

Washington, USA [14] was chosen as it contains a selection of multivariate data that lends itself to 

reformatting without loss of integrity and is recognised as a benchmark data set used for data 

mining [15], ensuring repeatability and falsifiability. This data set contains weather data readings 

recorded by a series of 70 buoys spread across the Atlantic Ocean between 1980 and 1998 and is 

presented as a single comma-separated values file with 178,080 rows and 2,136,960 data points 

spread across 12 attributes.  

 

Configuration M ethodology 

Data were imported from a comma-separated format to a single table in Microsoft Azure DB, then 

normalised to 3NF to provide the advantage of simulating multi-table queries, and each column 

was assigned an appropriate data type. For the ORM layer, Python was configured with the 

Django web framework which includes the ORM tool Django ORM. The package django-pyodbc-

azure was used for Azure DB database connectivity and a new model was generated from the 3NF 
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schema. A new property and function were created for the distance measurement required by one of 

the query objectives, detailed in the discussion of query objective O5.  

 

Aim, Objectives and Variables 

The aim of this set of tests is to examine the differences between queries generated by a subject 

matter expert and queries generated by an ORM tool, and note which, if any, structural anti-

patterns [6, 16] are observed. 

The objectives of this experiment were to determine whether: 

 

1) The performance of ORM-generated queries tends to be inferior to manually-written 

queries when comparing execution speed, resource consumption and execution plan 

complexity; 

 

2) ORM-generated queries demonstrate poorer relational query construction than queries 

constructed by a subject matter expert; specifically, whether ORMs tend to generate 

queries which have redundancies, are loop- rather than set-based, or display other 

inefficient characteristics as detailed elsewhere in the literature. 

 

The evaluation criteria used were based upon quantifiable and measurable instruments and were 

chosen as accurate representations of how queries are assessed by professionals [17]. Each criterion 

is composed of an independent variable (‘measure’) whose value changes upon the manipulation of 

the dependent variable, and a description indicating how the criterion should be assessed 

(‘comparative rule’). The criteria are also defined and described fully in Fritchey [17] and these are 

summarised in Table 4.10:  
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Table 4.10: Measures (independent variables) to compare the efficiency of queries 

M easure Definition Comparative Rule 

Cached plan size (B) The size of the cached plan in bytes. Smallest plan  

Total plan cost Relative measure expressed as a real number. Lowest plan cost  

Compile time (ms) Time in milliseconds to compile the plan 

(ready for execution). 

Shortest compile time  

Memory used during 

compilation (B) 

Memory that was used (B) to compile the 

plan. 

Lowest memory use  

Memory required (KB) Memory that was required to execute the 

query (KB). 

Lowest memory use  

Memory requested (KB) Memory that the query optimiser requested to 

be reserved to execute the query (KB). 

Most accurate (to Memory Required)  

Total execution time 

 

The time taken, in ms, between the query 

being executed and the return of the result 

set. 

 

Shortest execution time  

Total count of queries 

 

The total number of separate SQL queries 

required to achieve the object. 

 

Fewest number of queries 

 

The validity of objective 2, whether ORM-generated queries exhibit anti-patterns, is addressed 

through the comparison of each SQL query pair, noting any anti-patterns that emerge, cross-

referencing against the performance analysis where appropriate and sources of query anti-patterns 

in the literature, and cases where query functionality is missing in the ORM. 

The objectives represent queries against the data and are rendered firstly in English, then as a 

relational SQL query written by a practitioner; as a Django ORM method call; and as one or more 

relational SQL queries produced by Django ORM as a result of the method call.  For brevity, these 

are listed in Appendix C. 

 

The non-ORM generated queries were written to meet the query objectives before using Django 

ORM to generate queries that would meet those objectives. The underlying database objects via 

the Django ORM were accessed by opening a Django shell in Python then calling the methods in 

the models module of the new application and tracing the queries against the database using a 

profiling tool. This enabled the comparison of the manual database queries with the ORM queries 

to determine if there were any differences which might impede performance.  
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Experimental Results 

Table 4.11 shows how the manual SQL (non-ORM) queries compare with the ORM-generated 

queries for the seven independent variables used as measures. 

Note that due to random fluctuations in the compile time and total execution times that were 

outside the control of the experiment (including network latency to the database server; worker 

availability on the CPU scheduler; and memory allocation delays) a total of ten executions, with 

forced recompilation to avoid plan re-use, for each test were conducted to mitigate these effects and 

the mean average results (denoted as μ) are shown. Where there are multiple queries, the sum of 

the iterations are given under each measure heading.  

 

Query Objective O1 

The queries were non-identical. The ORM tool produced a near-identical structural query but with 

the addition of an explicit CONVERT() operation on the airTemp column. This conversion was not 

required since the column was already stored in the FLOAT datatype. This difference was absorbed 

by the query optimiser ignoring the conversion request which resulted in identical query plans. 

Anti-pattern(s): Redundant code 

 

Query Objective O2 

Note that aggregate() returns a dictionary object, not a QuerySet object. The annotate() method is 

not suitable when there is no column to group by. 

The queries were structurally identical with very small differences in the alias names and 

whitespace. This was reflected in the identical query plans, although the ORM-generated version 

took slightly longer to compile and execute, possibly due to a minute addition to the delay in the 

parsing stage by the different syntax.  

Anti-pattern(s): None 

 

Query Objective O3 

The queries were structurally similar, with aliasing differences and transposition of the predicates in 

the WHERE clause. Although different query plans were used, their key metrics were identical. Of 

small note is how the ORM tool generated needless syntax (brackets) and did not alias the 

columns. Execution time was inconclusive, with the non-ORM version registering a longer execution 

time but the ORM version taking longer to compile. 

Anti-pattern(s): Redundant code 
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Query Objective O4 

Django ORM does not support the creation of Cartesian (CROSS) JOINs against the data model. 

Instead, a more creative solution is required. The mean average and standard deviations of the data 

were collected and stored as dictionary entries in memory, then the main query results similarly. 

The isAnomalous column of the main results was updated depending on the average and standard 

deviation values, and whether the data was missing (NULL). This overcame practical difficulties 

working with the NoneType (NULLable QuerySet column) when trying to convert to float. 

However, for a fair comparison to the SQL version, the time taken to update this QuerySet in 

memory was added. Consequently, the ORM equivalent became a three-step process. 

 

Table 4.11. Results from ORM-generated and manual query performance testing 

 

 

The queries and subsequent plans produced for this query pair were extremely divergent. Due to 

lack of full ANSI-SQL syntax support (identified here and indirectly by Ireland et al. [6]), the 

approach needed to solve the problem and the consequent queries produced were correspondingly 
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different. The ORM-generated query also demonstrated a redundant CONVERT(), as in objective 

O1, but did demonstrate use of the native query preparation tools to handle the parameters and 

avoid storing the values with the compiled plan, which would increase the likelihood of parameter 

sniffing in future iterations and consequently skewed data affecting plan efficiency. As shown by the 

performance measurements, the ORM-generated query displayed significantly worse performance in 

many terms. 

Anti-pattern(s):  Lack of full ANSI-SQL syntax support, redundant code, multiple queries 

 

Query Objective O5 

The database query is too complex for the Django ORM to replicate directly, since it doesn’t 

support CROSS JOIN and there is limited support for the COS, ACOS, SIN and ASIN functions. 

Instead, the ORM was used to extract the location data, which was consumed recursively by 

iterating over each row in the location data for each row in the query set, effectively recreating a 

CROSS JOIN. The distances CTE was then compiled using a custom distances() function in the 

class definition using methods from the math module to implement the logic. Finally, the max 

aggregation of the output of this function was returned to the console. 

This set of calculations is an implementation of the spherical law of cosines, scaled for miles, to 

calculate distance between two points on a sphere [18]. This was used to accurately measure 

distance while taking into account the curvature of the Earth. 

Observations included 1,156 individual INSERT queries ran in place of a single INSERT, the 

splitting up of the query into multiple queries, double writes to the database, redundant code and 

implicit conversion issues. Although some metrics such as plan size were smaller than non-ORM 

generated queries, the query execution time for the ORM query was more than 300x that of the 

non-ORM query. 

Anti-pattern(s):  Multiple queries, N+1, implicit conversion, redundant code, lack of ANSI-SQL 

support 

 

Discussion 

The results are assessed against the evaluation criteria as follows. For each criterion, the two 

results – for the ORM-generated query, and for the non-ORM generated query – are compared 

using the condition for the criterion specified in the ‘Comparative Rule’ column (Table 10). If the 

non-ORM result meets the condition, a score of -1 is assigned. If the ORM result meets the 

condition, a score of 1 is assigned. If the condition cannot be applied as both results are equal, 0 is 

assigned. 
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For illustration:  For the criterion Total Execution Time (ms), the comparative rule is Shortest 

execution time. The results obtained for this criterion across the 5 query objectives were as follows, 

in the format Non-ORM/ORM:  1482.0/1484.0, 537.6/596.4, 449.0/572.2, 1942.4/1829.8 and 

98.0/32441.0. So, for each pair, the smallest value is found, and the appropriate score assigned. 

Comparing each pair, the scores are assigned as described:  -1, -1, -1, 1, -1. Summing these scores 

yields -3. Consequently, the score for this criterion across all query objectives is -3. 

In Fig. 4.12, the scores for all 7 criteria are presented using this scoring mechanism. Negative scores 

are associated with non-ORM generated queries, positive scores with ORM-generated queries and 

zero scores with neither category. For every evaluation criterion, the results showed that non-ORM 

generated queries outperformed ORM-generated queries using the definitions of the respective 

comparative rules. 

  

 

Fig. 4.12: Total Score by Evaluation Criterion 

 

The data can also be presented pivoted by query objective (O1 to O5). For this analysis, the same 

scoring mechanism is used but instead of assessment solely by evaluation criterion, the assessment 

is by query objective, which helps illustrate the relationship between query complexity and 

superiority of method. The comparative rules of the evaluation criteria are used to assign scores, as 

before. 

For illustration:  For query objective O4, each pair of results is assessed against the respective 

comparative rules. The results are in the format Non-ORM/ORM:  96/128, 5.24644/5.25825, 

17.4/24.2, 776/856, 3712/5704, 3712/5704, 1942.4/1829.8 and 1/2. The comparative rules for each 

can be summarised as ‘find the smallest value’, and so for each pair the smallest value is found, and 
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the appropriate score assigned:  -1, -1, -1, -1, -1, -1, 1, -1, which sums to -6. Therefore, the score for 

Objective O4 across all criteria is -6.  

The scores for the query objectives across all evaluation criteria are illustrated in Fig. 4.13. There is 

a correlation between query complexity and score – query objective O1, a simple query, had better 

overall performance when generated by an ORM than otherwise. Query objective O4, a complex 

query, had significantly better performance when generated by a non-ORM method than by the 

ORM, with only one evaluation criteria rating the ORM as better-performing.  

 

 

Fig. 4.13. Total Score by Query Objective 

 

However, query objective O5 shows a neutral result despite the complexity of the query, and the 

reason is that the number of evaluation criteria that favoured non-ORM generated queries was 

equal to the number favouring ORM-generated queries, so no clear determination can be made. 

This highlights a weakness in this analysis approach –each criterion is given equal weighting in the 

scoring despite extremes in the data and comparative importance of each criterion. Query execution 

time can be thought of as a strong desirable trait in query performance outcomes, perhaps more so 

(from the user’s perspective) than plan cost or memory use, and an equal weighting for all criteria 

obfuscates this view. This weakness can be overcome by drawing upon the data in detail.  Fig. 4.14 

illustrates the relationship, drawn from the results between mean total execution time and query 

objectives, or complexity (where O1 is least complex and O5 most complex).  
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Fig. 4.14: Correlation between increasing complexity and execution time of ORM methods 

 

This result shows that there is a generally positive correlation between complexity of query and the 

time taken to execute the query derived by the ORM-generated method, even if the result from O5 

as an extreme outlier is excluded. 

Performing t-testing on the observations of the mean execution time across the query objectives, 

this analysis is borne out by the p-values obtained for all the observations. Table 4.15 shows that in 

these t-tests, p > 0.05 (highlighted). This does not support the conclusion that there is a significant 

uplift in the execution time of the ORM-generated queries than the non-ORM generated queries as 

complexity rises, although other statistical measures such as mean average do support this case. 

 

Table 4.15:  p-values from t-testing of mean execution time observations 

  Non-ORM  ORM  

Mean 901.8 7384.68 

Variance 600811.08 196496129.3 

Observations 5 5 

Hypothesized Mean Difference 0 

P(T<=t) one-tail 0.180 

P(T<=t) two-tail 0.360 
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In general, the results showed that as query complexity rose, ORM-generated queries incurred 

performance penalties across multiple evaluation criteria and started to exhibit performance anti-

patterns referenced in the literature  

[1, 16].  

The scope of the investigation was over a relatively small data set of three tables. The results, 

showing divergence across many of the performance measures between both ORM-generated queries 

and non-ORM generated queries, are likely to diverge further as the complexity of the database 

schema and the amount of data involved increases, a conclusion supported by the evidence from the 

survey detailing performance deficits in ORM tools from database practitioners. 

 

4.5.3 Conclusions from the experimental investigations 

 

It is concluded that the evidence of query performance anti-patterns arising from ORM-generated 

queries is tangible, and that this phenomenon occurs for a variety of reasons.  It was determined 

that there is a correspondence between the effects described in the technical literature and real-life 

measurable effects on query performance, particularly as queries grow more complex, although it is  

noted that ORMs can produce simplistic database queries that perform on a par with traditional 

database queries, and that current mitigation strategies such as parameterisation are largely 

unaffected, except where unused within the ORM configuration.  It was found that, at scale, such 

effects characterise a slowdown in overall performance as the impacts of slower individual query 

executions cause cumulative performance effects.  This was demonstrated both though individual 

example, and example en masse, and that the findings in this area have been peer-reviewed. 

 

4.6 Chapter Summary 

 

In this chapter, the survey instruments used to investigate current perceived weaknesses in 

relational database query approaches and other associated topics were detailed; this included the 

piloting and administration of a questionnaire to an audience of practitioners, the results from 

which were analysed thematically and combined with the output of a short series of expert 

interviews.  Strong evidence was found that relational database performance and schema flexibility 

are ongoing current concerns, given the increase in the velocity, volume and variety of data; both in 

size and types; and that there is doubt among practitioners on the ability of ORMs to provide the 

scalability and robustness required to address these needs.  It was found the move to NoSQL (non-

relational) database systems to be driven by, at least in part, the perceived inflexibility of relational 

queries and concerns over the timeliness of results generated by data analysts.  
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It was further examined exactly what undesirable effects can be replicated within relational 

database systems by conducting two experiments; the first, to examine whether queries written 

manually tend to outperform ORM-generated queries, and the second, to determine whether query 

anti-patterns mentioned by the participants and elucidated in the literature can be reliably 

reproduced against a real-life data set.  Strong evidence was found that in some cases, ORMs fall 

into some evident anti-patterns, particularly the N+1 problem, nested queries and poor cached plan 

re-use due to excessive recompilations.  It is noted that these issues have a direct negative impact 

upon performance, correlating to the sentiments of the survey participants.  

In the next chapter, the proposed solution is detailed, incorporating three major components; first, 

a new internal query representation to replace semantic text parsing and plan cache storage with 

queries instead stored in multidimensional matrices, computable and comparable; second, a new 

comparison mechanism for said matrices, using the k-nearest neighbour algorithm; and third, a new 

proposed method for set representation in the relational model using dynamic schema redefinition 

with roots in the Zermelo-Fraenkel axiomatic schema of separation.  This framework is dubbed 

PETAS: PErformance Tuning for Adaptive Schemas. 
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Chapter 5 - Solution Design 

 

5.1 Introduction 

 

This chapter introduces Performance Tuning with Adaptive Schemas (PETAS), the proposed 

design approach for solving some of the problems illustrated in previous chapters in the field of 

database query performance tuning.  Specifically, this chapter seeks to address improving ORM 

query performance through introduction of a new method to group and compare queries by set 

construction, rather than as narrative text; through using this new representation to introduce 

better query comparison techniques, reducing recompilations on the query plan cache, a notable 

feature of ORM-generated queries; and through the introduction of a dynamic schema redefinition 

method to reduce the number of accesses required to service data queries and enable the flexibility 

and scalability demands of database users.    

 

5.2 Context 

 

Since the inception of relational database systems, the principal programming paradigm has 

gradually shifted to Object-Oriented Programming Languages (OOPL) [1, 2, 3], where objects are 

created and destroyed during normal application workflows and consequently database queries are 

generated when needed, rather than called from a query library or stored procedure.  This use of 

object-oriented application development caused a clash between the object and the relational 

model, a problem known as object-relational impedance mismatch [4, 5].  Essentially, this is a 

structural incompatibility between the characteristics of an instance of an object and the data 

stored in a relation, such that the data in the table cannot be stored as attributes in the object on a 

permanent basis but must be populated via query.   

In response to this mismatch, intermediary ORM software agents were developed which include the 

automatic generation of queries using a supplementary object-relational map, allowing developers to 

call a method rather than write queries directly.  These tools have various restrictions which limit 

the use of conventional relational query tuning mechanisms – for example, a propensity for nesting 

rather than joining, row-by-row (also known as N+1) query patterns, and eager fetching [6, 7].  

These issues could be overcome with careful query tuning, but unlike traditional non-ORM queries, 

ORM queries are generally inaccessible for rewriting as they are generated at runtime and not 

stored inline, nor stored as functional code blocks like stored procedures.  This can present 

significant difficulties when tuning for system-wide database performance since there is little control 

over the query execution.  
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Fig. 5.1, derived from Delaney [8], illustrates the typical query execution lifecycle in an RDBMS. 

 

 

Fig.5.1:  The query execution lifecycle (derived from Delaney [8]) 

 

In the proposed solution, the goal is to improve elements 1), 2), 3), 8) and 9) from Fig. 5.1. 

 

5.3 Solution Overview 

 

This section introduces PETAS, Performance Tuning with Adaptive Schemas, the proposed 

solution to the problem of tuning queries that are not accessible to relational query tuning 

mechanisms.  PETAS is designed to complement existing strategies such as index maintenance, 

data archival, tuning system parameters, and application of best practices in storage architecture.  

This chapter describes the theoretical underpinnings, the components of PETAS and discuss the 

construction and results from testing a proof-of-concept implementation in PostgreSQL. 

PETAS is based on the concept of multiple logical representations of data mapped to the physical 

data.  The idea of multiple logical representations of data is not new, and already exists at the 

object level - indexes, views and partitions of data augment physical data structures and support 

query performance [9, 10, 11].  However, no such implementations exist at the whole-database level, 

although some theoretical work has been done on using multiple schemas [14] and schema 

integration [15, 16].  The use of multiple logical representations of data allows dynamic redefinition 

of the structure of the data to suit the inbound query flow, with the ongoing creation and 

destruction of secondary schemas depending on how well they perform against the context of a 

constantly-variable query flow. This allows the physical data pages to have more than one direct 

mapping to a logical schema object.  Querying these different schemas with functionally equivalent 

(albeit syntactically different) queries would result in the same data being returned.   
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In current RDBMS implementations, tables are mapped to data pages either through primary 

indexes, which are B+ tree representations of the data together with pointers arranged in a tree or 

stored in heaps – unstructured collections of data pages.  Both can be overlaid with secondary 

indexes consisting of an array of pointers of which there are various types.  However, indexes of any 

type are only applied to individual objects – tables or materialised views.  The multi-schema 

approach would consist of schemas containing only whole-database indexes, with the data stored 

once in a base schema in the normal B+ tree format and alternative schemas constructed of whole-

schema index representations incorporating not only the individual objects but their relations, keys 

and other supplementary structures.   

The use of multiple schemas is supported by a simple machine learning classification algorithm, K-

nearest neighbour. The purpose of the classifier is to map each inbound query to an individual 

schema at runtime, depending on the structure of the query and to assess the prior performance of 

similar queries against the secondary schemas.  This feedback is used to improve the accuracy rate 

of the classifier over time by monitoring and learning from the performance metrics of the query 

flow.  In the proof-of-concept, it is demonstrated that this approach is not only viable, but that 

queries can be classified to different schemas effectively, and that query classification results in real 

and measurable performance improvements in query execution time when compared against the 

same queries run against a single base schema.  Results are also demonstrated that indicate that 

the query-to-schema classifier improves in accuracy over time by learning which schemas are best 

suited for different schema types, through the constant self-refinement of the classifier’s own 

metadata. 

There is little prior work in the literature on either multiple-schema models or the integration of 

artificially-intelligent methods for relational query performance tuning, and with effective data 

management increasingly important in a 'big data' culture [17, 18] and the continuance of the 

object-relational impedance mismatch challenge, the time is right for new research into how 

relational database tuning methods can be further developed. 

 

5.4 Principal PETAS components 

 

PETAS is a process split into two sections, the synchronous section which executes during the run-

time of a query, and the asynchronous section which conducts operations outside the query 

execution process.  The synchronous section is comprised of 5 ordered steps – the matrix parser, the 

scoring mechanism, the KNN selector, the schema classifier and the query mapper, the output of 

which feeds into the normal relational query execution cycle.  The asynchronous section comprises 

of the metadata update process and the schema mutator.  All these components are related and 

their position in the normal course of query execution is illustrated in Fig. 5.2: 
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Fig. 5.2:  Overview of PETAS 

 

PETAS starts at the point that a query, Q, is received via the application from a user.  Q is a valid 

database query against the base schema, Sb.  The overall goal is to find the schema Sn (from a 

range of available schemas including the base schema Sb) for Q so that Q executes in the least time 

and consumes the least resources in comparison to all other available schemas.  In the first step, 

PETAS deconstructs the query into a structure called a multi-dimensional adjacency matrix, which 

is a binary matrix in three dimensions describing connections between the components (columns, 

relations, parameters) within the query.  In the second step, PETAS compares this matrix against 

the matrices of previously-executed queries and attempts to isolate K number of previously-run 

queries (Q1 … Qk) structurally-similar to Q from the PETAS metadata cache using the K-nearest 

neighbour (KNN) algorithm.  In the third step, PETAS looks up the previous schema assignations 

of these ‘neighbours’ (queries Q1 … Qk) and fetches the majority verdict.   This verdict is 

determined by asking, of all (Q1 … Qk), which schema choice in (Q1S … QkS) occurred most often?  

This schema is Sn.  In the fourth step, as Q is only syntactically valid against Sb, Q must be 

mapped to a new query Q’, which is a representation of Q that is syntactically valid against Sn.  

Finally, in step five, the query Q’ is sent to the normal query process (parser, algebriser, optimiser 

and executor) supplied within the RDBMS.   

The principal components of the synchronous operations of PETAS are the matrix parser, 

responsible for representing the query in the form of a multi-dimensional adjacency matrix; the 
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scoring mechanism, responsible for comparing two queries and producing a measure of similarity; 

the KNN selector, responsible for choosing the K-nearest neighbouring queries to the query being 

assessed (nearest-neighbour can be construed as ‘closest in structure’); the schema classifier, which 

uses the outcome of the KNN selector to assign the query to a schema; and the query mapper, 

responsible for syntactic redefinition of the query to match the chosen schema.   

Other asynchronous functions feature alongside this critical path.  First, query metadata is stored 

in a metadata cache.  This cache is used only by the PETAS process and stores performance 

metadata, query weightings and definitions.  The update process is asynchronous so as not to 

interfere with query processing.  The other asynchronous process is the schema mutator, responsible 

for both the creation of new schemas through query assessment, and destruction of under-used 

schemas.   

The alternative query representation and similarity scoring processes are structured together into 

six distinct steps, which are shown in Fig. 5.3.  Dynamic schema redefinition is dealt with 

separately as it is both disparate and asynchronous to real-time query processing. 

 

 

Fig. 5.3:  Illustration of the alternative query representation process 

 

 

Parsing:  Using linear tokenisation, the query is split into distinct atomic elements.  Each element 

is classified as either an object or an operator.  Operators act upon objects and link two objects 

together.  The produced set of object-operator-object relationships are separated into ordered pairs 

(tuples) such that there are a set of object-object tuples with the left-side object the object acting 

upon and the right-side object the object acted upon.  An object may consist of other operator-

object tuples; in which case the object is a unique reference to another object-object pair.  Each 

tuple includes the operation upon the objects as a third value, so a tuple has exactly three 

members.  Operators can include the primitives =, >, <, >=, <=, != but also include implicit 

operations such as ‘member of’ and complex operators such as ‘ON’ or ‘LIKE’.  The type of 

operator is used to help in the classification process.  
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Formally, it is stated that this parsing process P takes as input a query Q which consists of a set of 

words w.  A series of functions f is applied over combinations of w in Q to produce a set S of tuples 

t, of which each t consists of exactly three values t1, t2 and t3 – two objects, and an operator.  This 

is shown in (1). 

 

1 2 3

( )  and

, ( , , )

P f w Q S

S t S t t t t

=   →

=   =
   (1) 

 

 

Codification:  Each object and each operator are codified with a shorthand notation.  All literals 

are then replaced with a single non-unique shorthand placeholder regardless of data type.  

Formally, it is stated (2) that for all object members t (t1, t2) of set S, each t1, t2 is replaced with a 

codification of t1, t2, designated c(t1) or c(t2) (t3 is left intact):  

 

1 2 1 2 2 3 3, , 1 ( ), ( ),S t t S t c t t c t t t=   = = =   (2) 

 

Classification:  Each object is classified as either a selection, a member, a predicate or an 

intersection.  Each of these terms are used in their relational or set-theoretic sense; a selection is 𝛔 

of values over a relation R; a member is an element x that belongs to a set A such that x ∈ A; a 

predicate is a condition placed on a selection or more formally, the expression that is φ in the 

selection 𝛔 of values over a relation R subject to the propositional expression φ; and an 

intersection is a natural join ⋈, theta join θ, semi-join ⋉ and ⋊, left-outer and right-outer join ⟕ 

and ⟖ (but not the anti-join ▷ due to the lack of a direct short analogue in SQL).  The output is 

a temporary set that is used in the matrixification step.  This set, designated K (3), consists of a 

distinct list of objects o and a classification c arranged as a tuple, such that: 

 

1

where c  C ('selection','membership', 'predication','intersection')

{( , )...( , )} o SnK o c o c



=  
  (3) 

 

Matrixification:  The matrixification function f operates on set K and arranges each object on 

virtual X, Y and Z axes with every object appearing on both X and Y axes in every Z slice.  The Z 

axis has a cardinality |Z| of 4, consisting of a slice for each classification; selection, membership, 

predication and intersection.  For every operator-object relationship on axes X and Y, the value 

at the intersections of the object and operator is marked with the value 1 only on the Z axis that 

corresponds to the classification of the operator on the objects within the relationship.  All other 

intersections are marked with the value 0.  The input is the codified set of tuples K that originate 
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from (3) above.  The output is a three-dimensional matrix M which is represented as two matrices, 

showing axes XY and YZ (4): 

 

 

[0 1] [0 1] [0 1] [0 1]

[0 1] [0 1] [0 1] [0 1]

( ), such that:

( )  ordered set of  and

( ) ( ) and

| ( )| | | | ( )| | | and

| ( )| 4

such that the values in M consist of (XY, YZ):

M f K

M x o K

M y M x

M x K M y K

M z

M

   

   

=

=  

=

=  =

=

=

 
 
 
 
 

(XY)      (YZ)                                            


 
 
 
 

   (4) 

 

 

Compression:  The ordered matrix of objects is combined (in shorthand notation) in a string format 

and the resulting binary expression, read left-to-right (X), top-to-bottom (Y), front-to-back (Z) as a 

hexadecimal value, with Z-axis categories coded as S, M, P or I respectively.  This yields a 

relatively short string that designated S’ (5) representing the structure of the query encapsulated in 

M. 

 

' m , ( ( ))S M hex concat m=         (5) 

 

Comparison:  When query comparison is required between two queries compressed in this form, the 

compressed strings are used, and the Hamming distance is calculated [19] between each co-ordinate, 

summing these to yield a whole positive integer.  Then, by inverting the resulting sum over the 

total population of co-ordinates, this is normalised to produce a measure of similarity in range 0-1, 

where 0 is completely dissimilar and 1 is identical: 

 

In the following sections, the key components of the process are examined. 
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5.5 Queries as Graphs – the Query Parser and Similarity Scorer 

 

5.5.1 Description 

 

SQL is the de-facto language used for communicating with relational databases and is based on the 

well-established principles of set theory [3, 20, 21].  SQL commands SELECT and JOIN map to the 

relational algebra constructs. Based on these building blocks, many set-theoretic expressions can be 

represented as SQL queries and vice-versa. This principle underpins the matrix parser. The purpose 

of the matrix parser is to represent the SQL query Q as an object on which mathematical 

operations can be applied; given that each SQL query is essentially a narrative construction obeying 

syntactic rules that is later reduced to an internal representation by the query optimiser [22], some 

method is required to represent the query in a formal, empirically-comparable format.  Text-based 

comparison methods do not provide sufficient support for query comparison since the key element 

in optimising a query is the query structure, rather than syntactic elements.  Queries which are 

logically identical may have syntactic variations such as whitespace, alias differences and so on 

which introduce false negatives.   

The query optimiser overcomes this issue by reducing a query to a parse tree [23, 24] – an internal 

representation of the operations and objects within a query.  In PETAS, a different method is 

chosen for several reasons. 

The first reason is that PETAS is concerned with the structure of queries rather than the binding 

of objects.  By regarding structure over content, computationally efficient similarity comparisons 

can be achieved using matrix arithmetic, without the need to iterate over the process of building 

and comparing trees.  The cost-based optimiser is adept at handling ordinary queries unaffected by 

the anti-patterns manifest in ORM solutions.  However, using constructs like multi-layer nesting of 

queries (instead of JOINs) and fetching many columns increases the complexity of the query for the 

CBO as discovered in the literature review.   

In the PETAS approach, the complexity of the query is less relevant – the cardinality of the 

matrices is bounded by the number of objects in the query, not solely the arrangement of these 

objects, which includes the relationship type. The CBO works on a query-by-query basis – if a 

query is not found in the cache, the query is recompiled with the attendant delay in the 

parse/compile/optimise process.  This process becomes inefficient if numerous similar ORM-

generated queries are received, so that a large majority can require compilation.  PETAS looks at 

the query structure, notes that the query Q is (structurally) like some previous queries (Q1 … Qk) 

and infers the best schema to use without consideration of the literals in the query.  Although the 

remapped query Q’ is still passed to the optimiser, it is executing against a better-fitting schema 

and, where appropriate, Q’ can be fitted to a previous execution plan, shortening the compilation 
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time and potentially undoing the anti-pattern caused by the ORM.  Thus, PETAS does not seek to 

replace the CBO, but to conjoin the query with the best possible schema in preparation for the 

normal optimisation and execution process. 

For these reasons, it is proposed to use an alternative method of relational query representation, 

based on a) identifying the relationships between elements in the query and b) describing the type 

of relationship, the whole to form a directed graph.   

In such a representation, each object in the query (column name, or table or view name) becomes a 

node in the graph, and the relationship type between nodes is categorised as either: 

 

• M embership (column name is a member of a table) 

• Intersection (a relationship between two tables, typically an inner or outer JOIN) 

• Predication (a condition, by way of an operator such as =, < or >, is placed on the 

relationship)  

• Projection (the node is a subset of another node).   

 

Although this is similar to a parse tree (an acyclic graph), it is constructed from the objects and 

the type of relationship they have with each other, rather than the relational operators alone, and 

has a completely different abstract (and internal) representation.  It is also not required, unlike 

with a parse tree, that any binding takes place. 

This directed graph can be represented in terms of the adjacency of the nodes, in a construct called 

an adjacency matrix, in accordance with general information theory [25, 26, 27].  More particularly 

it can be represented as a 3-dimensional binary adjacency matrix (termed an adjacency 'cube'), 

which represents the structure of the query in a 3-dimensional binary medium.  Three-

dimensionality is required for accuracy since it is desirable to capture the type of relationship 

between two objects and not simply the fact that a relationship exists.  This increase in accuracy 

increases the utility of the similarity score and is explained further through the given examples.  

The i and j axes are comprised of an ordered node list, and the k axis is a type representation.  NCx 

is assigned to mean the node cardinality, or number of nodes, of any given cube Cx.  Thus, any 

intersection of the three axis indicates a relationship exists and contains the value 1, and all other 

intersections contain 0.  The result of this process is a tuple comprising of two 3-dimensional 

adjacency cubes, which can be represented in memory as a multidimensional array. 
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5.5.2 Example 

 

Consider Fig. 5.4.  This SQL query fetches a sum of sale amounts grouped by sale date and the 

name of the point-of-sale terminal operator.  This might be a common query in a retail 

environment.  The base tables can be modelled as an entity-relationship diagram (the logical stage 

of database design) using 'crow's-foot' notation in the UML style; excluding columns that are not 

selected for the sake of simplicity. 

 

 

Fig. 5.4:  Example SQL query with ERD diagram 

 

Initially the same path is followed to parse this query ready for execution as existing 

implementations - tokenisation.  Fig. 5.5 shows a list of the individual query elements from the 

query in Fig. 4.  For this test case, a simple approach is tried; once tokenised, each token is listed 

along an x-axis and a y-axis, forming a square.  Where one element corresponds to any other 

element in the SQL syntax, the value 1 is inserted at the intersection of these elements.  By 

'corresponds', this means 'has a relationship with'.  So, for example, each column listed in the 

SELECT operator is linked to SELECT by virtue of being 'called' by the SELECT clause and will 

be marked with 1; else, marked with 0.  Where there is a nested relationship i.e. 

SUM(SLI.ItemAmount), the nested element will only be connected to its immediate siblings on the 

same hierarchical level if there are any direct actions on one from the other; and to its parent, but 

not to its grandparent.  So, SLI.ItemAmount has a relationship with SUM but not to SELECT. 



 

- 55 - 

 

 

It is not important at this stage that every nuance of the query is captured; rather, that the general 

'shape' of the query can be represented in some form that is suitable for computational comparison.  

This is a fair approach when considering that it is not possible to traverse from a bind tree to the 

original query in the current approach either; query translation from parsing to execution is 

currently a one-way operation, both in theory and in practice. 

 

 

Fig. 5.5:  Distinct query component list as key-value pairs 

 

This linkage operation results in a 2-dimensional matrix with N^2 elements in a square (where N is 

the number of elements in the query).  This is illustrated in Fig. 5.6(a).  This is indistinguishable 

from an adjacency matrix in graph theory; an adjacency matrix lists all vertices in a graph on the 

x- and y- axes and indicates, through a bit field (0 or 1), whether there exists an edge between the 

two vertices.  Thus, as an adjacency matrix has been able to be constructed, so too can a graph be 

constructed from the adjacency matrix which represents the query.  This is illustrated in Fig. 5.6(b) 

for the test query.  Given that the computational potential of the new model is under test, this 

visual graph representation only amounts to an interesting aside, but it does demonstrate how the 

process can neatly map from a semantic query to a mathematical, computationally-friendly 

construct in just a few algorithmic steps. 
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Figs. 5.6(a) and 5.6(b): Adjacency matrix and directed graph for the test query 

 

Some clarification is due on mapping the query to the adjacency matrix.  All relationships between 

elements are assumed to be undirected.  Relationships exist between a column and the owning 

table.  Relationships are pairwise, and no relationship between the main verbs (SELECT, FROM, 

GROUP BY) is specified using this model.  Elements are associated with themselves by the 

property of membership (each element of a set is a member of a set containing a single element - 

itself, in accordance with the Zermelo-Fraenkel axiom schema of separation or e.g. by self-JOIN 

operations. 

Fig. 5.7 shows a high-level diagram of the tokenisation algorithm. 
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Fig. 5.7: Query tokenisation flowchart  

 

5.5.3 Refining the algorithm  

 

This method as described has some significant drawbacks.  First, the number of vertices N of the 

resulting adjacency matrix will correspond to the number of tokens in the query, and so the 

cardinality (total number of matrix members) will always be the square of the number of vertices 

(N^2) and so the number of values to manage in the adjacency matrix will rise exponentially to the 

number of members.  This is scalable for short or simple queries but this exponential increase in 

complexity may lead to the algorithm either breaking down as the loop-based nature of the 

tokenisation and relationship-inference components of the algorithm and introducing an 

unacceptable query parsing performance overhead during execution, in proportion to the size of the 

query in hand. 

Next, the method of non-discrimination of the tokenisation phase leads to all tokens (elements of 

the query) being treated equally.  This means there is no discrimination in the type of query 

element; tokenisation occurs and loss of detail on whether an element is an actor (e.g. a keyword 
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like SELECT) or an object being acted upon (e.g. a column/attribute).  Considering that the object 

goal is to be able to represent the query as a 'shape', represented by a graph, for the express 

purpose of being able to compare some query 'shape' to some other query 'shapes' to determine a) 

the likelihood or feasibility of execution plan re-use and b) for the benefit of decision-making when 

selecting a schema, then the ability to differentiate between at least actors and objects would re-

introduce a major degree of detail lost during the initial attempt at query modelling. 

Finally, the practice of non-discrimination between token types means that the corresponding loss 

of detail necessitates the provision of an accompanying legend or map, mapping each token to its 

columnar position or label.  In the relational model, such maps are known as attribute headings and 

carry domain information.  Not to do this would introduce a higher probability that two queries are 

compared and incorrectly categorised as similar, despite the token mappings being very different.  

Conversely, minor differences between two otherwise-similar queries such as the rearrangement of a 

JOIN or the use of a CTE (common-table expression) instead of a subquery, may lead to the 

incorrect categorisation of two queries as being largely dissimilar despite their structural similarity. 

These flaws can be addressed by introducing a third dimension to the adjacency matrix.  At 

present, the mechanism is to determine whether two tokens have a relationship – the type of 

relationship is not being determined.  If relationship type was being mapped along a third 

dimension (z-axis) the adjacency matrix is transformed into an adjacency cube.  But how to 

distinguish type?  In the two-dimensional model, a relationship is specified as a 'has-a' or 'is-a' or 'a 

dependency exists upon' - the three terms amounting to the same definition, that is a binary choice 

between whether a relationship exists between two elements.  In the three-dimensional model, the 

type of relationship is also under consideration. 

To determine the allowable domain of types, the SQL syntax and some of the underlying relational 

theory can provide a solution.  Consider that the solution now differentiates between the thing 

being acted upon (the object) and the thing doing the acting (the actor), then an intuitive 

modelling method might be to list all the objects on the x- and y- axes, and classify the actors into 

a range of types along the z-axis.  What relational operations are available to help provide some 

taxonomy for classification?  The relational algebra provides several clues.  Projection, which maps 

broadly to the SQL equivalent of SELECT (it is not the same as relational selection); union; 

intersection (which maps to several types of JOIN, both relationally and in SQL); rename, which 

can be actualised in SQL using aliasing; filtering (in SQL, rendered as JOIN clause predicates and 

WHERE clauses and relationally, a selection); amongst others.  Interestingly, there is no specific 

relational form for aggregation, but this facility exists in SQL.  Aggregation can be rendered in the 

relational algebra, albeit awkwardly. 

Given the basic relational operators, these can be roughly classified into five distinct 

categorisations.  Note that this still does not render a complete representation of the query in an 
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adjacency cube format; the loss, notably, includes relationships between elements and groups of 

elements; and the particulars of primitive operators; but the ability is gained to capture additional 

information about the query through the use of the z-axis.  Consequently, the four chosen 

categories are projection, intersection, membership and predication which together cover a large 

proportion of the legal operations in relational algebra and SQL syntax.  Each category occupies a 

row on the Z-axis.  These terms are defined below. 

Projection is the relational-algebraic term for the exposure of some relation R (or relational 

operation) on one or more other relations, limiting the attributes exposed to some subset of R such 

that the attribute values are limited.  Thus, any element can be identified that is SELECTed 

within the SQL query FROM some R being projected, and at the intersection between the attribute 

on the x- and y- axes in the adjacency cube and the projection layer of the z-axis, the value 1 may 

be inserted.  An intersection of R.a1 and a1 on the projection layer of the z-axis (z = 0) indicates 

R.a1 is projected (SELECTed) from R and so there is no need to include the actors on the x- or y- 

axes.  This has the benefit of reducing the number of components on the x- and y-axes and 

improving scalability of the model. 

Intersection is next defined as the case where R is intersected with some S (both R and S being 

relations/relational variables); such that the intersection (term not used solely in the strict 

relational sense) causes some form of a SQL JOIN.  This JOIN will either have an additive, 

subtractive or null effect on the attributes being returned (and on the range of data returned), 

depending on what attributes are projected.  So, for example, the relational semijoin [left-bowtie] or 

[right-bowtie] corresponds somewhat, but not entirely to, the INNER JOIN with predicates in SQL.  

Therefore, in the adjacency cube any intersection of an element where there exists a JOIN directly 

upon another element is marked with 1.  As JOINs in SQL are actioned between tables 

(relations/relational variables) and not columns (attributes), this, by definition, means intersections 

in the adjacency cube may only exist between relations and not attributes.  Note that the JOIN 

predicates are not lost but are captured in the predication layer and not the intersection layer.  

Also note that should a true relational intersection occur - (a natural JOIN, and represented in 

SQL by the INTERSECT keyword) then this can also be represented in this layer. 

M embership is defined as an attribute such that an attribute a is a member of a relation R if the 

attribute is present as an instance of a domain in all the tuples in R.  In SQL parlance, it is enough 

to say a column is present in some table (or some expression of a relation such as the join of two 

tables).  This layer differs from the projection layer as all columns in the query, regardless of 

whether they are SELECTed, are mapped to their relation in this layer.  This is particularly 

important in WHERE clauses and JOIN predicates, for example, which may impose restrictions on 

the data being returned without necessarily returning that data in the result set.  Membership is 

established between an attribute and a relation (but R is always a member of R, if R = R), and 
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attributes are members of themselves (an is a member of an if an = an) - more formally, relations 

are improper subsets of themselves, as are relations, in the adjacency cube.   

Finally, predication is the layer that deals with the SQL clauses which compare one element to 

another.  Predicates are found in the WHERE clause, in JOIN predicates and in more complex 

constructs such as LIKE, IN and CASE statements.  In their basic form these are two elements 

separated by a primitive operator (such as =, >, <).  Relationally, these are filters and projections 

that are limited by filters are selections.   

In the adjacency cube, all predicates are taken as pairs of values under comparison and the 

intermediate operators are discarded.  If any constants are involved, these are mapped to 

placeholder values and included in the dimensions of the cube.  Each placeholder value is notated 

as p1 .. pn.  For the example '...WHERE R.a1 = 7 AND R.a2 < 5', (R.a1 = 7) becomes p1 and 

(R.a2 < 5) becomes p2.  Then any relationship between the predication and another element is 

expressed using a 1 at the intersection in the normal manner. 

In Chapter 6, this query representation idea is further described through example.  Chapter 6 also 

presents algorithms for implementation, describes the implementation with code examples, describes 

the testing process and presents the results, implemented in the RDBMS PostgreSQL. 

 

5.5.3 Calculating the similarity between three-dimensional adjacency cubes 

 

Given an adjacency cube as an output from the query parser process, the cube is compared to 

previous adjacency cubes stored in order to establish, from the performance history, the best 

schema allocation for the cube based on the allocations of similar cubes.  Given cube C1 , a second 

cube C2  is fetched (being a cube from memory, or a cache) for comparison.  This comparison may 

be repeated many times.   

The similarity scoring process takes two cubes as inputs and constructs a third cube C3 based on 

the respective Hamming distances [19] (defined as the number of transitions required to get from 

state A to state B in a number system, in this case base 2 integers) between each corresponding 

intersection - that is, each intersection of nodes and type.  Each corresponding intersection ([i, j, k]) 

is compared between cubes, the Hamming distance forming the third cube.  When NC1 ≠ NC2, the 

cube with the lowest cardinality, min(NC1, NC2) is aligned to any corner of the larger cube then 

padded with 0s.  The reason for the padding is to ensure the cubes are of the same size; formally, to 

ensure NC1 = NC2 = NC3.  This is important since otherwise an error is introduced to the outcome 

of the Hamming distance, directly proportionate to the disparity in cube size.  Any member of the 

population of C3 can then be calculated using (6):    
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 ,  (6) 

 

where integers i and j, representing the nodes, are bounded by the conditions i = j, j > 0, j ≤ NC1, 

and j ≤ NC2.  Integer k, representing relationship type, is bounded by 0 < k ≤ 4.  Using (1) for all 

distinct ([i, j, k]) co-ordinate triples in C1 (overlaid on C2), one may then calculate the similarity 

score by summing the Hamming distances at each resulting ([C3i, j, k]) intersection in the third 

cube to calculate an integer S, defined as (7):   
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 ,  (7) 

 

which normalises S so that S is bounded by 0 ≤ S ≤ 1. 

This process is illustrated with the following example.  Consider Fig. 5.8, which describes query Q, 

another query M, and how the structure of these queries can be represented using directed graphs: 

 

 

Fig. 5.8:  Directed graph representations of SQL queries 
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These graphs look similar but are not identical.  Q has an extra projection (in the SELECT, A.x) 

and an extra predicate (in the WHERE, A.y > 1).  The conclusion from the examination of both 

queries, subjectively, is that the queries are 80% similar, therefore assign S = 0.8. 

This can then be checked by calculation using the matrix parsing method.  Let the directed graphs 

first be represented using 2-dimensional adjacency matrices.  The application of (6) to the 

adjacency matrices for Q and M obtains the matrix of the Hamming distances, C3 as shown in Fig. 

5.9: 

 

 

Fig. 5.9:  Calculating Hamming distances from adjacency matrices 

 

It is noted that H = 1 (there is only 1 non-zero value in the resulting C3 matrix) and NC3 = 5.  

Equation (7) is used to normalise this, and the result is S = 0.96.  This is a significant deviation 

from the initial subjective estimate of 0.8 and implies there is only a 4% difference between the 

queries. This is counter-intuitive since there are 2 significant differences in the query structure from 

a total of just 5 objects.  Note that A.y features as the object of both differences, but C3 shows only 

one deviation.  The information about the second deviation is lost when using 2D representation, 

since the information about the type of difference is not taken into consideration.   

The matrices are now recalculated, but in three dimensions – that is to say, to recalculate the 

adjacency cubes, to preserve this type information on the Z axis.  Fig. 5.10 illustrates the exploded 

cubes and the subsequent cube C3 that results from the application of (6): 
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Fig. 5.10:  Calculating the adjacency cubes and Hamming distances for Q, M 

 

Recalculating (7) on C3, NC3 remains at 5, but H is now the sum of non-zeros in C3, so H = 2.  

This yields S = 0.84.  The type information has not been lost, and the similarity score calculated is 

now much closer to the original subjective estimate of 0.8. 

It is acknowledged that, using this method, the node identifiers are discarded, and that such 

similarity comparisons may therefore detract from accuracy due to factors like table population 

(cardinality).  However, this reflects the approach used in execution plans, which are constructed 

indirectly from the parse tree structure of the query [22, 28] therefore, structure has been shown to 

be significant in query tuning and considerations like database statistics are regarded as secondary 

in this context.  It is also acknowledged that, as described, the process will not support certain set 

operations such as UNION; the example presented here represents the initial implement of PETAS 

and future versions will deal with constructs such as aggregates.  There is also the scope to use a 

4th, 5th or nth dimension to further describe the query, however this will come at the cost of 

exponential computational effort since the number of calculations scale exponentially. 
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5.5.2 KNN selection – query ranking using K-nearest-neighbour 

 

K-nearest neighbour (KNN) is a machine learning classification method that can classify a point P 

in relation to entities (Ei ... En) in a domain D of multi-dimensional Hilbert space H (a plane 

occupying N dimensions) based upon the proximity of P to a set of K entities (Ei ... En) as modified 

by a weight W assigned to each (Ei ... En) (modification can be additive or multiplicative).  The 

boundary, K, can be defined in two ways – either whether K enables a binary classification 

according to if any given Ei is a neighbour of P with the outcome 0 or 1 depending on whether Ei 

falls within the boundary K, or by simply including the nearest neighbours of P by some distance 

measure (Euclidean, Manhattan etc). 

The concept of using a boundary function for K is illustrated in the figures below for N = 1, N = 2 

and N = 3.  It is notable that K need not be linear or a constant, but is bounded only by the 

inclusion of P and some upper limit – Fig. 5.11(a) shows K as a circle on the number line with 

radius k; Fig. 5.11(b) shows K as an ovoid with height 1.8y and width x (foci at [0.27y, 0.5x] and 

[1.73y, 0.5x]); Fig. 5.11(c) shows K as a cuboid occupying space x, 1.5y and 2z.  All Wx are additive 

in these examples.  K can be arbitrary and variable. 

 

Fig. 5.11(a) shows how entities E1 and E2 fall within K, but E3 does not.  Regardless of 

dimensionality, each Ex is affected by some weight Wx.  Adjustment of each Wx can therefore affect 

the position of Ex and membership of K.  Thus, the population of Ex points inside K varies over 

successive feedback cycles through the ‘movement’ of (E1 … Ex) within D.  This trait can be used 

to affect the outcome of classifications and subsequent schema assignations.  
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Figs. 5.11(a), 5.11(b) and 5.11(c):  K in one, two and three dimensions 
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For PETAS, an alternative approach is used, nearest-K number of Ex rather than all Ex within a K 

boundary.  In PETAS, this is a one-dimensional KNN representation.  However, instead of a 

boundary condition defining K, the K-nearest to point P is selected.  For example, K = 3 means to 

include the 3 nearest neighbours to point P.  This still enables the movement of each Ex within the 

domain but provides the advantage of being able to sort all Ex in an ordered list and simply select 

the top K from the list.  It also avoids having to set a fixed boundary condition for K which may 

be suboptimal.  Note that the term P is replaced with Q, since Q is the point of origin for the KNN 

with a value of 1, and Ex is replaced with Qx, since the entities in the generalisation are queries in 

PETAS. 

To proceed, some query Q is taken and the adjacency cube is calculated.  Then, for some 

predefined number of queries (Q1 … Qx) together with their weights (W1 … Wx) drawn from a 

‘metadata cache’ of training data, Equation (1) is used to produce C3 for each (Q, Qx), and 

Equation (2) is used to produce S’x, the similarity score, from C3.  The term S’x is multiplied by the 

weight Wx resulting in Sx and this value is stored as an addition to the tuple (Q, Qx, Cx, Wx).  By 

this repetition over x members of the metadata cache, x tuples of (Q, Qx, Cx, Wx, Sx) are obtained.  

The Sx values are plotted along the number line and so the outcome is a list of x values of Sx, each 

Sx associated with an Qx, and falling in the domain 0 <= D <= 1.   Weights are updated after the 

schema selection process. 

The output of this process is the top K queries and their associated schema assignations on this 

number line closest to Q, which are used when moving on to the schema classifier. 

 

5.6 The Schema Classifier and Query M apper  

 

5.6.1 Description 

 

The outcome of the KNN process leads to the identification of K tuples from the training data in 

the metadata cache.  Each tuple consists of the unique identifier of the query in hand, Q and the 

unique identifier of the identified neighbouring query, Qx identified by the KNN selector.  Each 

tuple also has as a prior schema classification Cx associated with it - this is the identifier of the 

schema on which the Qx query last ran, and a weight Wx.  Thus, each tuple has the construction 

(Q, Qx, Cx, Wx).  From these identifiers, a majority verdict for schema choice can be attained by 

examining all the Cx values associated with the Qx values in the tuples and applied to the query Q 

in hand.  In this way, Q is assigned the most ‘popular’ schema choice of all its nearest-neighbouring 

queries (queries with greatest structural similarity).  Note that the conditions (k mod 2 ≠ 0) and (k 

> 1) should be true to ensure a majority.  Next, Q is mapped syntactically from the base schema 
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for which it is written to the majority verdict schema and passed to the RDBMS query processor to 

execute and return the result set.  In the proof-of-concept implementation, a stored procedure was 

written to execute this but in a full implementation, a lower-level structure for re-mapping, such as 

the parse tree, would be used. 

After execution, the execution duration for the query Q, termed d, is returned; this information is 

used to compare against the previously-recorded d of each of the neighbouring queries (Q1 … Qk), 

designated Qxd.  For each Qx, if Qxd > d then the schema choice Cx for the query Qx was deemed 

‘useful’ – this means query Q executed quicker than Qx, and the corresponding weight Wx is 

increased (one could equally measure CPU cost, or I/O consumption instead of query execution 

time).  Conversely, if Qxd < d then Cx for the query was not useful – this means query Q executed 

slower than Qx, and the weight Wx is decreased.  If Qxd = d then Wx is unchanged.  In this way, 

the process rewards each Qx query in the metadata cache with an increased weight Wx according to 

whether the schema choice of the query was a good choice, in the sense that Q executed faster than 

Qx, for the query Q.  Successive iterations mean that the Qx queries whose schema choices are most 

applicable to the recent inbound flow of Q queries are probabilistically more likely to be selected 

than those Qx queries which have schema choices leading to slower executions of Q than Qx.  By 

‘probabilistically more likely’, it is meant that due to the application of higher weights Wx to the 

most-used queries in the metadata cache, these increased weights for each (Q1 … Qk) in the KNN 

calculation make these queries more likely to be selected as neighbours to Q than any other query 

in the cache.  With many iterations (hundreds, thousands or tens of thousands) the queries in the 

cache that are most useful gain the largest weights, and the least useful are rarely if ever selected – 

these are pruned periodically by the asynchronous cache management process.  Thus, the metadata 

cache of previously-run queries continually adjusts itself to the inbound flow of queries Q, and any 

change in the general structure of the query flow is soon reflected in the classifier. 

 

5.6.2 Feedback mechanisms 

 

Database queries are highly variable.  This variability can range from intra-query, where one query 

is unlike the next, to variation caused by different query patterns being generated by different 

applications (e.g., ORM vs. stored procedure calls), to long-term query pattern changes over time 

as ORM solutions are upgraded.  Creating a classifier based on some N number of different query 

types is undesirable in these circumstances, firstly because creating such a system is resource-

intensive and must act as a catch-all for unknown query flow.  These limitations are experienced in 

expert systems which are more rigid than systems that can respond to external stimuli.  

Consequently, PETAS uses a machine-learning approach, classifying queries but having in place 
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processes for improving the accuracy of the classifier based upon the success of its own previous 

classifications.  These are feedback mechanisms. 

Three feedback mechanisms are proposed in PETAS.  The first, previously described, updates the 

weights in the metadata cache as queries are executed.  The second is the feedback mechanism for 

the KNN process.  This is run asynchronously, i.e., not within the execution timeframe of the 

query, and is responsible for a) inserting the most recently run query Q into the metadata cache 

(with a weight = 1) and b) pruning the metadata cache of entries based on the lowest weights and 

the most aged entries.  In this way, the metadata cache population is managed.   It is proposed 

that a future iteration of PETAS will include a third feedback mechanism to reduce the need for 

multiple instances of schemas.  In the current proof-of-concept implementation, there is a 

requirement to maintain multiple instantiations of schemas to enable schema choices.   

This has the effect that data is duplicated and requires, at minimum, a doubling of storage space 

for two schemas.  This is currently necessary since existing RDBMS platforms do not support the 

creation of logical-only schemas at the whole-database level.   It is envisioned that PETAS could be 

used in a multi-schema environment, where there exists a ‘base’ schema of the physical data and 

multiple alternative schemas which contain arrays of logical pointers to the data in the base 

schema.  These pointers will also consume space but could be designed in such a way as to occupy 

less space than the physical data.  These alternative schemas can then be created and destroyed by 

an asynchronous process which is responsible for a) designing and implementing schemas based on 

the flow of inbound queries, b) assessing existing schemas against how often they are executed 

against and c) destroying under-utilised schemas. 

The similarity scoring mechanism, including details of the KNN mapping process and the 

identification of a suitable schema derivation for use by a given query, is described more fully in 

Chapter 7, which also provides algorithmic implementations; code details from the practical 

implementations using Python and PostgreSQL; the experimental design and results from testing, 

before discussing benefits, drawbacks and overall success of this approach in a life-like environment. 
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5.7 Dynamic Schema Redefinition 

 

5.7.1 A new definition of query efficiency 

 

Query performance can be measured in many ways, often dependent upon the platforms 

themselves.  For example, cloud platforms such as Microsoft Azure use Database Transaction Units 

(DTUs), a blended measure of CPU and I/O use, to measure query throughput [29]; natively, cost 

can be measured per-query as a ‘query cost’, a purely relative measure that has roots in CPU use 

and I/O load [30]; others may prefer to define query performance, and therefore RDBMS efficiency, 

as a combination of more traditional system administrative measures such as disk reads, disk faults, 

CPU use and memory used.   

However, there is no ubiquitous definition of query efficiency, and so it is necessary to invent one 

for the purposes of comparative analysis before proceeding.  In this section, a new definition is 

proposed, and it is shown through example how the reduction of the number of rows of data that 

the query execution engine must traverse for a given query is correlated to the cardinality (number 

of rows) of the data set in question, thus demonstrating how query efficiency can be defined as a 

ratio of rows required by the query versus row cardinality of the relation being queried.  The 

relational algebra is used.  This efficiency metric is not central to the novel contribution to 

knowledge, being a simple definition of a measure to enable further testing on dynamic schema 

definition, and so is not discussed elsewhere. 

When defining the efficiency E of a query Q, it is first stipulated that this query must be a 

selection, since the efficiency relates to the rows selected versus the rows available (8).  The term E 

is then defined as the ratio of data values returned from the relation R by the selection 𝛔, as 

modified by some predicate φ, divided by the number of data values read by the query (using the 

cardinality notation | | ) to return the query result (9): 

 

Q = 𝛔φ(R)     (8) 

E(Q) = |Q| / |𝛔φ(R)|   (9) 

 

The number of data values read is chosen as a measure since the purpose of this approach is to 

limit the number of data accesses required to service a query towards an efficiency ratio of 1; to 

this end, this measure is not concerned with CPU thread efficiency, memory use, network use or 

other measures individually.  For simplicity, a read is defined as a collection from storage of a 
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single row/column intersection value by the RDBMS rather than as an operation to collect a 

specific number of bytes, since the number of bytes returned by a read can be variable, but if this 

figure is known, then the subsequent calculation is straightforward. 

The number of reads required to service a query are determined by several factors; the type of 

components in the query execution plan, the cardinality of the tables (relations) involved as query 

sources, and the availability of suitable views and indexes on the base schemas.  In other words, the 

efficiency is hereby defined by the amount of necessary data reads required to return the result 

versus the amount of unnecessary data reads that took, or would take, place.  The definition of 

efficiency measure E can therefore be precisely defined, differentiated by the four common types of 

query plan component that read data [31, 32, 33, 34], as follows.  As in (8) and (9), cardinality 

(number of rows) of a relation is notated using the standard notation |R| and the notation 

described in Codd’s relational algebra [20] is employed. 

For table/index scans, which involve reading the whole base relation or clustered index R and 

extracting results based on predicate φ, it is assumed that the yield of the query can be retrieved 

entirely from the scan; else, the efficiency E must be distributed according to the cost of the 

individual components in the query plan as appropriate.  The attributes of a relation are denoted as 

R(a1…an). 

The efficiency of a table or index scan against R can therefore be defined as shown in (10): 

 

E(𝛔φ(R)) = (|(𝛔φ(R)| ⋅ |𝛔φ(R(a1 … an))|) / (|R| ⋅ |R(a1 … an)|)  (10) 

 

Equation (10) can be illustrated with a worked example.   

If query Q yields 50 rows of 9 columns from the RDBMS, then: 

 

  |(𝛔φ(R)| = 50 and | |𝛔φ(R(a1 … an))| = 9.   

 

If |R| could yield 10,000 possible rows of data, with |R(a1 … an)| = 11 possible columns, then these 

values are substituted as: 

 

(50 ⋅ 9) / (10000 ⋅ 11) = 450 / 110000 = 0.004.   

 

This means that, implemented using a single table scan, the efficiency E(𝛔φ(R)) of query Q has an 

efficiency ratio of 9/2200, or 0.4%; the scan operation read and discarded 99.6% of all data in R to 
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service the query Q = 𝛔φ(R), assuming that a read is defined as an I/O operation on a single 

row/column intersection.  This idea scales linearly to the definition of a read as a row read, since 

each value in a row of data would need to be read to include or exclude it from the query result, 

given no key is used in table or index scans. 

Comparing this against B+-tree index seeks, which involve reading a defined ordering of the base 

relation R structured as a B+- tree and extracting results based on some desired predicate key K, 

the efficiency correlation is calculated based on the number of tree traversal operations required 

and the reads required to find the appropriate data in the leaf level of the tree.  As with the table 

scan, it is assumed that the yield of the whole query 𝛔K(R) can be retrieved from using the 

predicate key and from within the index; where this is not the case, the efficiencies will need to be 

distributed across the relative components in the query execution plan according to component 

cost.  The number of traversal operations (T) depends on several factors: the average row length 

(L), the number of rows per leaf page (RP), the standard page size (S) in the RDBMS, the number 

of rows in the relation R (denoted |R|) and consequently the number of leaf-level pages required 

(|P0|) in the index.   

Using the methodology for calculating read operations on a B+-tree described by Delaney [8], the 

average rows per page and the number of leaf pages in a B+- tree can be derived using the 

following equations, expressed as (11) and (12): 

 

Average Rows per Page (RP) =  

Standard Page Size (S)/Average Row Length (L)    (11) 

Number of leaf pages (|P0|) =  

Number of Available Rows (|R|)/Average Rows per Page (RP)  (12) 

 

By calculating |P0|, it is now known how many leaf pages are required, and consequently the 

number of intermediate level pages required from |P0| can be inferred by looking at the bytes 

required (B) by the datatype of the key for a single value; for a single, non-composite integer 

column this is normally 4 bytes, for example.  The structure of these pages varies between RDBMS 

implementations, but in Microsoft SQL Server, to illustrate, the page pointer length (PP) is 6 bytes 

and row overhead (RO) is 1 byte, yielding 11 bytes for a single intermediate-level row in the B+-

tree ([8], pp. 322) with a single integer key, although this may vary between RDBMSs and software 

versions.  The number of intermediate-level pages (|P1|) required can be calculated as per (13): 

 

|P1| = (|R| ⋅ (B + PP + RO)) / S   (13) 
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The calculation now progresses to the next level of the index (which can be either another 

intermediate level or the root level).  This level contains page(s) with pointers to the previous 

intermediate level of pages.  Therefore, only enough pages in this level are needed to contain the 

pointers to all pages in the previous level, as illustrated in (14): 

 

 |P2| = (|P1| ⋅ (B + PP + RO)) / S   (14) 

 

This calculation holds true for all intermediate and root levels, so the total number of pages 

required can be calculated as the sum of all pages across all levels, and consequently the total 

storage required (TS) in bytes for the index as this figure multiplied by the standard page size for 

the RDBMS, as per (15): 

 

TS = S ⋅ Σ(|P0|, |P1| … |Px|)    (15) 

 

Having calculated the various values of Pn, the next calculation is the average number of traversal 

operations T as shown, starting from the root level (denoted Px) through to the leaf level (denoted 

P0), subtracting iteratively from x until 0 is reached, culminating in (16): 

 

T = { ∀x > 0, ⌈ (|Px-1| / 2) ⌉ + ⌈ (|Px-2| / 2) ⌉ + …  

⌈ (|Px-n| / 2) ⌉ } + … ⌈ (|R| / |P0| / 2) ⌉    (16) 

  

 

Table 5.12 illustrates an example using these formulae, which shows 28 reads are required against a 

B+-tree index containing 10,000 rows (|R|) where each row is on average 200 bytes (L), given some 

standard RDBMS parameters (S, B, PP and RO), deriving the remaining variables from these 

parameters (RP, |P0|, |P1|, TS and finally T): 
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Table 5.12:  Worked example for calculating traversal cost across a B+-tree index of 10,000 rows,  

consisting of a 200-byte average length per row. 

Description 
Page size 

(bytes) 

Avg. row 

length (bytes) 

Avg. rows per 

page 

Num. of 

rows in 

relation R 

Num. of leaf 

pages in 

index 

Bytes 

required per 

index key 

Notation S L RP |R| |P0| B 

Value 8096 200 40.48 10000 248 4 

Description 
Page pointer 

length (bytes) 

Row 

overhead  

(bytes) 

Num. of 

pages in first 

level  

Num. of 

pages in 

root level  

Storage 

required 

(bytes) 

Traversal 

cost (reads 

required) 

Notation PP RO |P1| |P2| TS T 

Value 6 1 14 1 2,096,864 28 

 

Finally, the efficiency E of searching any B+-tree index can be defined as the ratio of the number 

of reads required across some index R to read one row of data. 

𝛔K(R) can then be defined as the inverse of T for one row of data, as per (17): 

 

 

E 𝛔K(R) = 
    1             

{∀x > 0}, ⌈ (|Px-1|/2) ⌉ + ⌈ (|Px-2|/2) ⌉ + … ⌈ (|Px-n|/2) ⌉} + … ⌈ (|R|/|P0|/ 2) ⌉          

 

              (17) 

 

The index in the worked example shows T = 28, so 28 row reads are required, on average, to find 

one row identified with a key using the example variables (200 bytes/row, 10,000 rows).    

Using this example,  
 

E 𝛔K(R) = 1/28 = 0.036 = 3.6% efficiency (for this case).   

This can be modified for multiple rows N by changing the numerator to N accordingly.   

Compare this against the values for a simple table scan produced by (17), substituting MAX(an) = 

3 as a reasonable assumption of column count for both the query and the available columns (any 

integer substitution of MAX(an) will do, if 𝛔φ(R(a1 … an)) = |R(a1 … an)|, as they cancel), as 

shown in (18): 
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E(𝛔φ(R)) = (|(𝛔φ(R)| ⋅ |𝛔φ(R(a1 … an))|) / (|R| ⋅ |R(a1 … an)|) =  

E(𝛔φ(R)) = (1 ⋅ 3) / (10000 ⋅ 3), therefore  

E(𝛔φ(R)) = 3/ 30000 = 1 / 10000 = 0.01%  (18) 

 

With a table scan producing an efficiency ratio of 1/10000 (0.01%) and a B+-tree index scan 

producing an efficiency ratio of 1/28 (3.57%), it is clear that a) the index seek is more efficient for 

this example and b) that both methods fall short of the goal of full query efficiency with a ratio of 

1/1. 

It is clear that indexes, although useful in reducing the search space, still require unnecessary 

traversal through data unrelated to the query and as such, a smaller search space and consequently 

better query efficiency would be beneficial in reducing the number of required reads regardless of 

whether indexes are used.  It is acknowledged that this example has been simplified to read key 

values rather than whole rows, but the number of traversals remains the same in either case. 

In Table 5.13, the importance of reducing |R| is illustrated by modelling the relative efficiencies 

using this method for a range of queries using a single index seek, varying the average row length 

RL at various intervals between 10 and 3,200 bytes and the number of rows in the relation |R| 

between 100 and 1,000,000 at logarithmic intervals, using a 3-level index, calculating the efficiencies 

using Equation (2): 

 

Table 5.13:  Relative index seek efficiency for varying conditions using a simple efficiency measure 

 

 

It is evident from the data that although index seeks are efficient when |R| is relatively low and L 

is relatively high, this efficiency quickly tends to LIM → 0 as the number of rows in the index 

grows, and generally improves as a function of the number of bytes per row.  This indicates that 

the primary driver of efficiency, as defined, is the number of available rows in |R| and strengthens 
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the case for data structures which are tailored to the query, reducing |R|, in order to reduce the 

amount of data required to be traversed to yield a query result, thereby maximising efficiency. 

For bookmark/row lookups (against either indexes or heaps, given a page number and row offset), 

this is defined as a single read of a row given the precise physical location is known and therefore, 

under the simplified definition of a read, is 100% efficient. 

The findings in this area strengthens the case for the reduction of row data for query traversal, 

lending credence to the idea of subset schemas as alternative query sources.   

This idea, forming the central paradigm in the proposed solution, is explored further in the next 

section. 

 

5.7.2 Dynamic schema redefinition process design 

 

As a result of the work described in Section 3, the denominators in common across all types of read 

operation are clearer.  These are the total available values in R (|R|) that must be addressed to 

produce the result set of 𝛔φ(R) or 𝛔K(R) (given there is no purpose in differentiating between 

table/index scans and index seeks any longer, these terms will be used interchangeably) and therefore 

that the overall aim of increasing query efficiency can be addressed by reducing this denominator to 

the lowest possible value and maximising E(𝛔φ(R)) towards E(𝛔φ(R))→ LIM (1).  This means 

reducing the total available number of data values that must be read, by any technique, towards 

|𝛔φ(R)|.  To do this, it is proposed to derive and implement new schema definitions in real-time to 

reach this goal, maximising the query efficiency. 

To decide on the queries to analyse, the query cache can provide a short-term storage facility.  

Across RDBMS systems, the query cache is a local repository (normally held in memory while the 

RDBMS is active) of query statements, associated query execution plans and other metadata.  The 

purpose of the cache is to minimise the time taken to generate query execution plans by re-using 

plans already generated [35]; this is appropriate for both exact query matches and queries which 

can be parameterised, i.e. literal values substituted with placeholders, such as with prepared 

queries.  This cache can be repurposed; to analyse past query patterns and generate new 

supplementary schemata with appropriate cached query mappings.  The proposed technique for 

doing this is presented in the next section. 

There is precedence for mapping between sets and subsets within the relational model, defined in 

axiomatic set theory, for which set notation is used.  The Zermelo-Fraenkel (ZF) axiom schema of 

separation [3] defines this, as shown in (19): 

 



 

- 76 - 

 

 

(∃B)(∀x)(x ∈ B iff. x ∈ A and φ(x))  (19) 

 

In straightforward terms, this means given the existence of a set B, for all members x in B, x is a 

member of B iff. x is a member of A and some predicate concerning x holds. 

Translating this to the relational model it can be stated that given a subset schema B, for all rows 

of attribute values in B, those rows exist in B if and only if there exists a superset schema A and 

some predicate, or condition about those rows in B is true.  Therefore, this is functionally 

equivalent to deriving a result set based on some predicate from a wider base schema, or in even 

simpler terms, equivalent to asserting that a query result is valid if it derives from a wider pool of 

available data.  This axiom can be used to build subset schemas by analysing queries from the 

cache, deriving smaller subsets of attributes and predicates from those queries, and presenting these 

as materialised views (MVs) against which future iterations of the cached queries can be executed. 

In RDBMS systems, views are overlays of relational expressions upon base schemas – essentially, 

query definitions which can be called using shorthand.  An example follows - a view on table 

CUSTOMERS returns a subset of all attribute values from the Customer table bounded by the 

predicate ‘WHERE DateJoined > ’10 May 2019’ (20): 

 

CREATE VIEW Customer AS  

  SELECT * FROM Customer WHERE DateJoined > ’10 May 2019’; (20) 

 

This query can also be defined using the relational algebra, as shown in (21): 

 𝛔 (DateJoined > ’10 May 2019’)(Customer)  (21) 

Formally, this appears to be a simple implementation of the axiom schema of separation.  However, 

views are illusory in the sense that although they provide a convenient shorthand to the user or 

calling application, when a query against a view is executed, the underlying definition of the view is 

called rather than any pre-prepared set of results.  In other words, views alone do not provide any 

significant performance advantages over simply running the base queries; indeed, the sole 

advantage is human readability.  For performance advantages, materialised views (MVs) are used 

for proof-of-concept implementation instead, which are persisted and the data within them stored 

separately to the base tables.  Translating this idea back to the axiom schema of separation, the 

MV is set B, the base schema is set A and the predicates are the view definition. 

The set of algorithms and the algorithmic implementation of this solution are presented in Chapter 

8 and the accompanying Appendices. 
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5.8 Chapter Summary 

 

This chapter introduced and described PETAS, a new multi-component system to 

supplement and augment the relational database query optimiser process within RDBMS 

engines.   

Comprised of three key parts with various subcomponents, this chapter illustrated how the 

query parser can read an inbound SQL query and transform it into a compressed 

multidimensional matrix representation of itself, reflecting the key structures.  It was 

shown how such multidimensional ‘cubes’ can be compared and contrasted through 

generating a third cube as a function of two cubes and using Hamming distances to 

calculate a similarity score, and shown how k-nearest neighbour can be used to identify 

previously-run queries similar to a query in hand, extracting the schema variant most 

likely to service a query effectively based on previous performance data.  Finally, the 

dynamic schema redefinition process was discussed, a novel method of using the ZFC 

axiomatic schema of separation to define and destroy new schema subsets in real-time, 

implementable using techniques such as materialised views, and based upon usage and 

performance data from executed queries.  

The following three chapters further enhance and explain each element of PETAS; the 

query parser (Chapter 6), the similarity scoring mechanism (Chapter 7) and the dynamic 

schema redefinition process (Chapter 8), and present the algorithms, implementations, 

tests, and results.    
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Chapter 6 – Testing: Query Representation  

 

6.1 Introduction  

 

As described in Chapter 5, PETAS is split into three functional parts; the query parser, the 

similarity scoring mechanism and schema selector, and the dynamic schema redefinition process.  

This chapter deals exclusively with the query parser; Chapter 7 describes the similarity scoring 

mechanism and schema selector; and Chapter 8 describes the dynamic schema redefinition process. 

This chapter moves from the conceptual design of the alternative query representation design 

presented in Chapter 5 and produces an algorithm that realises this design within a suitable 

relational database environment.  Recalling Chapter 5 Fig. 5.2 (reproduced below as Fig. 6.1), the 

process takes as input a database query in the SQL language and outputs an adjacency matrix, or 

cube: 

 

 

Fig. 6.1:  Overview of PETAS – matrix parser highlighted 

 

In this chapter the algorithms to achieve this as pseudocode are presented, together with 

implementations.  Difficulties are discussed with the working implementations and areas that could 

not be implemented fully are described.  The experimental approach and experiment details are 

provided.  The results of these experiments are described, and finally, in the conclusions, the 

outcomes are summarised and suggested improvements, and considerations for reproducibility and 

future development, are given. 
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6.2 Design 

 

This section expands upon the solution design for the query parser first described in Chapter 5. 

SQL queries are multi-part, hierarchical objects with many properties and difficult to represent 

mathematically.  To solve this problem, the query must be represented in some way that allows 

comparison against another one for similarity. 

It is evident that a query can involve several relationships.  Consider the query: 

SELECT A.x, A.y, B.x FROM A INNER JOIN B ON A.z= B.z WHERE A.x = 10; 

 

 

This query can be represented in the relational algebra like so: 

  

z = B.z)A.x=10 A.x, A.y, B.x A ( )( ) (     

 

This query consists of a projection of columns x and y from table A, and column x from table B 

drawn from a selection with a predicate, based on two equi-joined relations.  The predicate 

conditions are that columns z in A and B must be identical, and that column x from table A must 

be equal to 10.  There is also an intersection of A on B, an equality relationship on A.z = B.z, 

membership of A by A.x, A.y, A.z, and membership of B by B.x, B.z (B.y is never specified).  

These can, using the new proposed method, be alternatively modelled as a set of relationships with 

attributes.  This means at a very basic level, a SQL query could be visualised as a kind of ‘query 

molecule’ based solely on these relationships (Fig. 6.2). 

 

 

Fig. 6.2: Visualising a query in three dimensions 
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Note, this diagram shows only the relationships between entities (A, B) and attributes (A.x, A.y, 

A.z, B.x, B.z)), but this diagram is homomorphic to a directed graph.  Directed graphs can be 

represented as matrices - particularly ‘adjacency matrices’.  These show, at a basic level, whether 

any two nodes in a graph are connected by an edge. 

An adjacency matrix can be calculated for the query above.  First, each node, and what node it is 

connected to (the direction), is listed as shown in Table 6.3. 

 

Table 6.3:  Example node relationship list 

 

 

From the node list, the adjacency matrix can be built, where 1 represents ‘is a relationship’, 0 

represents ‘no relationship’.  The Y axis is ‘Node From’, the X axis ‘Node To’.  Note that there is 

no differentiation on attribute type at this stage, with the matrix having only two dimensions. 
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Table 6.4:  Two-dimensional adjacency matrix 

 

 

This matrix shown in Table 6.4 is useful but doesn’t take into account the type of relationship 

(edge).  It simply measures, based on the fact that a relationship or edge exists.  The type of 

relationship - hereafter called attribute type - can be a projection (SELECT), intersection (JOIN), 

member (e.g. A.x is a member of A) or predicate (either a JOIN predicate like A.z = B.z or a 

WHERE predicate like A.x = 10).  These correspond to ZFC axiomatic set theory and the 

relational operations defined by Codd.  This new method breaks new ground not through the 

definition of new set operations but by the representation of those operations in an adjacency 

matrix form. 

This problem is approached in the same way as the simple representation above.  The attribute 

type could be considered a dimension in its own right, on the Z-axis, as illustrated in Fig. 6.5: 

 

 

 

Fig. 6.5:  Attribute type on the Z-axis. 
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This is difficult to represent in a single matrix, since it could be considered as multiple two-

dimensional matrices - one matrix for each node from / node to set, for each attribute type.  

However, although it is difficult to visualise, it is not difficult to represent as a multidimensional 

array in code, and not difficult to conceptualise mathematically in Hilbert space [1] – Euclidean 

space extended from 2 to infinite dimensions (in this case, three). 

Therefore, this two-dimensional matrix can be built up from the simple adjacency matrix for 

determining if there is an edge between two nodes to a more complex adjacency cube – adjacency 

matrices extended along the Z-axis – to determine if there is a relationship/edge between two nodes 

that is of a particular type (projection, intersection, member or predicate). 

This allows the modelling of how similar two queries are at a lower level of granularity - i.e., is a 

relationship a SELECT (projection or member), a JOIN (intersection / predicate), or a WHERE 

(predicate)?  This has some benefits: it reduces information loss in the translation from narrative 

SQL text to computational construction, and it is speculated that accuracy in similarity scoring will 

be improved through closer query matching. 

Cubes are difficult to model in two-dimensional space, so one can visualise a three-dimensional 

adjacency cube laid out as 4 side-by-side matrices (4 slices of the cube on the Z axis) with the 

attribute type above it.  Each attribute type (Join, Membership, Intersection or Predicate, 

indicated by their initials) as a slice of the cube on the Z axis - a layered representation.   

See Fig. 6.6 for this representation. 

This approach can work for any number of dimensions in Hilbert space (although to visualise them 

in more than three dimensions requires some mental creativity), which means that any number of 

layered attribute properties could be included.  This is useful because there are certain aspects of 

each query which are ignored in the test query above – such as predicate variable and value (A.x = 

10 for example); whether a projected attribute (A.x) has any transforms upon it (e.g. CAST(A.x 

AS INT)) and what they are; dealing with INNER JOIN vs. OUTER JOIN; complex structures like 

Common Table Expressions; and subqueries or nested queries have yet to be modelled.   

There are ways forward to include more detail in this process.  The first is to model the adjacency 

matrices in a Hilbert space, an N-dimensional space where N > 3 and follow the same 

process.  However, the cost of computation would very quickly rise as the number of dimensions 

increases.  The degree of similarity between any two multidimensional cubes may also drop 

significantly since the ratio of overlapping data points to the available volume of the cube will 

reduce by an order of magnitude (since the volume of the cube has been increased by an order of 

magnitude). 
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Fig. 6.6:  3D adjacency cube rendered in two dimensions 
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Another way to extend the model is to take inspiration from physics and consider real 

molecules.  Molecules bind to each other, so complex structures like subqueries could be represented 

as a separate molecule with a bind on one or more nodes common to both.  Thus, the adjacency 

matrices could be calculated separately, and the similarity scores combined in a different way (e.g., 

weighted mean).  This direction is not pursued in the remainder of this research but discussed 

further in the conclusions later in this document. 

 

6.2 Algorithmic Implementation  

 

This process description can now be codified into an algorithm.  The function should accept a 

database query written in SQL as input, and output an object representing the data in the 

expected format for an adjacency cube.  To do this, a left-to-right parsing approach is taken as per 

Knuth [2] and others, similar to the approach used to build a parse tree in current database 

implementations (discussed in Chapter 3).  However, rather than produce a parse tree, an internal 

map of relationships with relationship types is produced, represented as a multidimensional array; 

an object type supported by most, if not all, major programming languages. 

Given an input database query, the following algorithm calculates the edges and types of edge, 

ready to be transmuted into a directed graph. 

The algorithm begins by collating the elements of the query between the SELECT and FROM 

clauses.  These are the projected elements of the query; those columns fetched from the database 

and displayed to the user.  This is Algorithm 6.7. 

 

Algorithm 6.7: Extracting projection elements from a SQL query 

 

# Extract projection elements to list ‘edges’  

----------------------------------------------- 

define list 'edges' as empty list 

define variable 'node' as empty untyped variable 

define variable 'SELECTs' as empty string variable 

define variable sqlQueryA as the input SQL query, rendered as a string 

set SELECTs = substring of sqlQueryA between position 6 and up to  

  but not including first instance of word 'FROM' 

set SELECTs = SELECTs, trimmed of whitespace 

# loop 

do while length of SELECTs > 0: 

--if first char in SELECTs != ",": 

----set node = node + first char in SELECTs 

----set SELECTs = SELECTs from 2nd char to end 

--else: 

----set node = node, trimmed of whitespace 
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----to an unnamed 3-item list, append var 'node' from the first position  

----  to the first instance of '.'; node; and the string 'PROJECTION' 

----append this list as an element in list 'edges' 

----set node to an empty untyped string 

----set SELECTs = SELECTs from 2nd char to end 

set node = node, trimmed of whitespace 

to an unnamed 3-item list, append var 'node' from the first position  

  to the first instance of '.'; node; and the string 'PROJECTION' 

append this list as an element in list 'edges' 

 
 

 

The input to Algorithm 6.7 is the SQL query, designated sqlQueryA. 

Algorithm 6.7 simply loops through each object SELECTed in the query, identifies the object as a 

projection upon the remainder of the query and outputs these facts to a multidimensional [1,3] list 

or array. 

The output of this process is a list with dimensions [1,3], each row representing a column or 

database object that is SELECTed from the query; in the test query, this is A.x, A.y and B.x. 

Next, the contents of the input query are parsed to extract the relations, or tables, from which 

these projections are taken – the table names.  These tables intersect in zero or more ways (no join 

conditions mean no intersections other than on itself; several tables imply several intersections) so 

each element is marked as an intersection in the output array.  This proceeds as follows in 

Algorithm 6.8. 

 

Algorithm 6.8:  Extracting membership elements from a SQL query 

# Extract FROM clause elements  

define variable 'FROMs' as a substring of sqlQueryA between the first instances  

  of 'FROM and 'WHERE' 

set FROMs = FROMs, trimmed of whitespace 

define variable 'nodeFrom' as an empty untyped variable 

define variable 'nodeTo' as an empty untyped variable 

define variable 'entities' and set as a substring of FROMs from first character  

  to first occurrence of 'ON' or first occurrence of WHERE or end of string. 

set nodeFrom as substring of entities from first char to first whitespace (first word) 

set nodeTo as substring of entities from first occurrence of JOIN to end of string 

set nodeTo = nodeTo, trimmed of whitespace 

define variable nodeFromEntity set to value of nodeFrom (value assignment) 

define variable nodeToEntity set to value of nodeTo (value assignment) 

to an unnamed 3-item list, append nodeFrom, nodeTo and 'INTERSECTION' 

append this list as an element in list 'edges' 

 

#parse the JOIN predicates 

define variable 'PREDICATEs' as an empty untyped variable 

set PREDICATEs = substring of FROMs from first occurrence of ON to end of string,  

  trimmed of whitespace 

set nodeFrom = substring of PREDICATEs from first character to first occurrence of 

whitespace 
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set PREDICATEs = substring of PREDICATEs from first occurrence of whitespace to end of 

string, 

  trimmed of whitespace 

set nodeTo = substring of PREDICATEs from first occurrence of whitespace to end of string 

to an unnamed 3-item list, append nodeFromEntity, nodeFrom and 'MEMBERSHIP' 

append this list as an element in list 'edges' 

to an unnamed 3-item list, append nodeToEntity, nodeFrom and 'MEMBERSHIP' 

append this list as an element in list 'edges' 

 

# repeat both code blocks above, adjusting input variable sqlQueryA  

  or var 'FROMs', for multiple JOIN predicates. 

 

 

The input to Algorithm 6.8 is sqlQueryA (therefore Algorithms 6.7 and 6.8 could be run in 

parallel).  This algorithm extracts the JOIN clauses from the query and identifies the source (left) 

and destination (right) for each JOIN.  Predicates are not yet considered.  This is done through 

word-by-word parsing of the portion of the SQL query between the clause indicators FROM and 

WHERE and is repeatable for multiple JOIN predicates. 

The output of this algorithm is a [1,3]-shaped multidimensional array or list containing ordered 

tuples of the source, destination and ‘INTERSECTION’ string for each intersection identified in the 

query. 

 

Algorithm 6.9:  Extracting predicates from a SQL query 

# parse the WHERE clause 

define variable 'WHEREs' as an empty untyped variable  

set WHEREs = substring of sqlQueryA from first occurrence of 'WHERE' to end of string, 

trimmed of whitespace 

replace all semicolons in WHEREs with empty strings 

define new variable 'andFlag' as Boolean-typed variable initialised to 0  

define new variable 'orFlag' as Boolean-typed variable initialised to 0 

if 'AND' in WHEREs: 

--set andFlag = 1 

if 'OR' in WHEREs: 

--set orFlag = 1 

 

# further variable declarations 

define variable 'leftSide' as an empty untyped variable 

define variable 'rightSide as an empty untyped variable  

define variable 'nodeFrom' as an empty untyped variable 

define variable 'nodeTo' as an empty untyped variable 

 

# parse the WHERE clause in the case that it does contain Boolean expressions AND or OR 

while exists 'AND' or 'OR' in WHEREs variable, do: 

--while andFlag = 1 

----set leftSide = substring of WHEREs from first character to first whitespace 

----# check for primitives and set the right-hand side of the predicate accordingly 

----if WHEREs contains the string '=': 

------set rightSide = substring of WHEREs from the first occurrence of '=' to the first  

------  occurrence of 'AND'  

----if WHEREs contains the string '>': 

------set rightSide = substring of WHEREs from the first occurrence of '>' to the first 

------  occurrence of 'AND'  

----if WHEREs contains the string '<': 
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------set rightSide = substring of WHEREs from the first occurrence of '<' to the first  

------  occurrence of 'AND'  

----if WHEREs contains the string '<>': 

------set rightSide = substring of WHEREs from the first occurrence of '<>' to the first  

------  occurrence of 'AND'  

----# note this list can be extended to all legal primitives in SQL, including IN/LIKE,  

----  >=, <=, IS, CONTAINS, EXISTS and so on 

----# now assess to see if the right side is a column or a literal 

----set nodeFrom = leftSide 

----if rightSide can be converted without error to a real number  

----  or rightSide contains a single quote ': 

------set nodeTo = nodeFrom 

----else if rightSide contains a full stop # (looks like a column name) 

------set nodeTo = rightSide  

----to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE' 

----append this list as an element in list 'edges' 

----if the string 'AND' exists in WHEREs: 

------set WHEREs = substring of WHEREs from the first occurrence of AND  

------  to the end of string, trimmed of whitespace 

----set andFlag = 1 

----else: 

------set andFlag = 0 

----# end of inner loop 

 

--# now parse the OR statements, if they exist, from the WHERE clause  

--  (follows same pattern as ANDs) 

--while orFlag = 1 

----set leftSide = substring of WHEREs from first character to first whitespace 

----# check for primitives and set the right-hand side of the predicate accordingly 

----if WHEREs contains the string '=': 

----if WHEREs contains the string '=': 

------set rightSide = substring of WHEREs from the first occurrence of '=' to the first  

------  occurrence of 'OR'  

----if WHEREs contains the string '>': 

------set rightSide = substring of WHEREs from the first occurrence of '>' to the first 

------  occurrence of 'OR'  

----if WHEREs contains the string '<': 

------set rightSide = substring of WHEREs from the first occurrence of '<' to the first  

------  occurrence of 'OR'  

----if WHEREs contains the string '<>': 

------set rightSide = substring of WHEREs from the first occurrence of '<>' to the first  

------  occurrence of 'OR'  

----# note this list can be extended to all legal primitives in SQL, including IN/LIKE,  

----  >=, <=, IS, CONTAINS, EXISTS and so on 

----# now assess to see if the right side is a column or a literal 

----set nodeFrom = leftSide 

----if rightSide can be converted without error to a real number  

----  or rightSide contains a single quote ': 

------set nodeTo = nodeFrom 

----else if rightSide contains a full stop # (looks like a column name) 

------set nodeTo = rightSide  

----to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE' 

----append this list as an element in list 'edges' 

----if the string 'OR' exists in WHEREs: 

------set WHEREs = substring of WHEREs from the first occurrence of OR  

------  to the end of string, trimmed of whitespace 

----set orFlag = 1 

----else: 

------set orFlag = 0 

----# end of inner loop 

# end of loop 

 

# in the case of a simple WHERE clause with no additional predicates 
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set nodeFrom = substring of WHEREs from first char to first occurrence of whitespace,  

  trimmed of whitespace 

set WHEREs = substring of WHEREs from first occurrence of whitespace to end of string,  

  trimmed of whitespace 

if rightSide can be converted without error to a real number  

  or rightSide contains a single quote ': 

--set nodeTo = nodeFrom 

else if rightSide contains a full stop # (looks like a column name) 

--set nodeTo = WHEREs 

to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE' 

append this list as an element in list 'edges' 

 

 

Algorithm 6.9 parses the WHERE clause.  It first looks for the condition that AND or OR exist in 

the predicate list within the query (after the WHERE clause) indicating multiple predicates to be 

parsed; if this is the case, the predicates are extracted separately, the left-hand and right-hand 

elements of each predicate pair are extracted according to the primitive used, and a [1,3] 

multidimensional array or list captures output as left-side (nodeFrom), right-side (nodeTo) and 

‘PREDICATE’.  In the case that a single predicate is used (no AND or OR statement is used), the 

same process is used but once only.  Algorithm 6.9 outputs the list ‘edges’ as a [1,3] 

multidimensional array and thus can be run in parallel alongside Algorithms 1 and 2 if the ‘edges’ 

arrays are concatenated afterwards. 

The output array ‘edges’ is now used to build the adjacency cube, assuming Algorithms 6.7 - 6.9 

have been processed.  To do this a series of 2-dimensional lists are built, one for each attribute 

type, then inserted into a 3-dimensional list using simple if-then control flow logic.  It would be 

better for performance to execute this operation in SQL as it has set support i.e. parallelism rather 

than iterating through each list, however the method is irrespective providing the outcome is the 

same and OOPL languages have threading which implies parallelism could be used in the iterative 

method.  

 

Algorithm 6.10:  Function variant of query parser 

function buildEdgeArray (sqlQueryA): 

    <Algorithm 1> 

    <Algorithm 2> 

    <Algorithm 3> 

return edges 

 

Algorithm 6.10 wraps the edge list generation code (Algorithms 6.7 – 6.9) in a simple function, 

taking sqlQueryA as input and outputting a single multidimensional array, ‘edges’, size [n,3]. 

The next step is to convert this edges array to an adjacency cube.  Algorithm 6.11 describes this 

process, which takes an edge list as input, sorts and deduplicates the list, iterates through the list, 

identifies all pairs of relationships per attribute type and appends these to an output list, ‘cube’. 
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Algorithm 6.11:  Converting an edge list to an adjacency cube 

Sort the edge list 

Deduplicate the edge list 

For each type of attribute JOIN, INTERSECTION, MEMBERSHIP, PREDICATE: 

  For each nodeFrom/nodeTo (data point in the current attribute type slice): 

    If a relationship exists in edges for the current attribute type, mark with a 

1  

    Else mark with a 0 

  Once complete, append an [n, 4] list to ‘cube’, a new multidimensional list: 

    [nodeFrom, nodeTo, attributeType, value (0 or 1)] 

 

 

The next step is to use these cubes as input to the similarity scoring function.  This is discussed 

further in Chapter 8. 

 

6.3 Practical Implementation 

 

The following Code Listings 6.12 – 6.15 show the implementation of Algorithms 6.7 – 6.10 in 

section 6.2.  These were implemented in Python 3. 

 

Code Listing 6.12:  Algorithm 6.7 in Python 

# Extract WHERE clause elements  

SELECTs = sqlQueryA[sqlQueryA.find("SELECT")+6:sqlQueryA.find("FROM")].strip(); 

edges = []; 

node = ""; 

 

while len(SELECTs) > 0: 

  if SELECTs[0:1] != ",": 

    node = node + SELECTs[0:1]; 

    SELECTs = SELECTs[1:]; 

  else: 

    node = node.strip(); 

    edges.append([node[:node.find(".")], node, "PROJECTION"]); 

    node = ""; 

    SELECTs = SELECTs[1:]; 

node = node.strip(); 

edges.append([node[:node.find(".")], node, "PROJECTION"]); 

 

 

 

Code Listing 6.13:  Algorithm 6.8 in Python 

# Extract FROM clause elements  

FROMs = sqlQueryA[sqlQueryA.find("FROM")+4:sqlQueryA.find("WHERE")].strip(); 

nodeFrom = ""; 

nodeTo = ""; 

entities = FROMs[0:FROMs.find("ON")].strip(); 
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nodeFrom = entities[0:entities.find(" ")]; 

nodeTo = entities[entities.find("JOIN")+4:].strip();  

nodeFromEntity = nodeFrom;  

nodeToEntity = nodeTo; 

edges.append([nodeFrom, nodeTo, "INTERSECTION"]); 

edges.append([nodeTo, nodeFrom, "INTERSECTION"]); 

 

# deal with JOIN predicates (repeatable) 

PREDICATEs = FROMs[FROMs.find("ON")+2:].strip(); 

nodeFrom = PREDICATEs[0:PREDICATEs.find(" ")]; 

PREDICATEs = PREDICATEs[PREDICATEs.find(" ")+1:].strip(); 

nodeTo = PREDICATEs[PREDICATEs.find(" ")+1:];  

# add the memberships  

edges.append([nodeFromEntity, nodeFrom, "MEMBER"]); 

edges.append([nodeToEntity, nodeTo, "MEMBER"]); 

# add the JOIN predicate  

edges.append([nodeFrom, nodeTo, "PREDICATE"]); 

   

 

Code Listing 6.14:  Algorithm 6.9 in Python 

# deal with WHERE clause  

WHEREs = sqlQueryA[sqlQueryA.find("WHERE")+5:].strip(); 

WHEREs = WHEREs.replace(";",""); 

andFlag = 0; 

orFlag = 0; 

# deal with multiple clauses (only AND and OR supported) 

if "AND" in WHEREs: 

  andFlag = 1; 

if "OR" in WHEREs: 

  orFlag = 1; 

   

while "AND" in WHEREs or "OR" in WHEREs: 

  while andFlag == 1: 

    leftSide = WHEREs[0:WHEREs.find(" ")]; 

    if "=" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("=")+1:WHEREs.find("AND")].strip(); 

    if ">" in WHEREs: 

      rightSide = WHEREs[WHEREs.find(">")+1:WHEREs.find("AND")].strip(); 

    if "<" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("<")+1:WHEREs.find("AND")].strip(); 

    if "<>" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("<>")+2:WHEREs.find("AND")].strip(); 

    # Assess to see if right side is a column or a literal  

    nodeFrom = leftSide; 

    if rightSide.isdigit() == True: # is a number 

      nodeTo = nodeFrom;  

    elif "'" in rightSide: # is a string  

      nodeTo = nodeFrom; 

    elif "." in rightSide: # looks like a column name  

      nodeTo = rightSide; 

    edges.append([nodeFrom, nodeTo, "PREDICATE"]); 

    if "AND" in WHEREs: 

      WHEREs = WHEREs[WHEREs.find("AND")+3:].strip(); 

      andFlag = 1; 

    else: 

      andFlag = 0; 

   

  if "OR" in WHEREs: 

    orFlag = 1;  

  while orFlag == 1: 

    leftSide = WHEREs[0:WHEREs.find(" ")]; 
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    if "=" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("=")+1:WHEREs.find("OR")].strip(); 

    if ">" in WHEREs: 

      rightSide = WHEREs[WHEREs.find(">")+1:WHEREs.find("OR")].strip(); 

    if "<" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("<")+1:WHEREs.find("OR")].strip(); 

    if "<>" in WHEREs: 

      rightSide = WHEREs[WHEREs.find("<>")+2:WHEREs.find("OR")].strip(); 

    # Assess to see if right side is a column or a literal  

    nodeFrom = leftSide; 

    if rightSide.isdigit() == True: # is a number 

      nodeTo = nodeFrom;  

    elif "'" in rightSide: # is a string  

      nodeTo = nodeFrom; 

    elif "." in rightSide: # looks like a column name  

      nodeTo = rightSide; 

    edges.append([nodeFrom, nodeTo, "PREDICATE"]); 

    if "OR" in WHEREs: 

      WHEREs = WHEREs[WHEREs.find("OR")+2:].strip(); 

      orFlag = 1; 

    else: 

      orFlag = 0; 

 

 # no ANDs or ORs, simple single WHERE  

nodeFrom = WHEREs[:WHEREs.find(" ")].strip(); 

WHEREs = WHEREs[WHEREs.find(" ")+3:].strip(); 

if WHEREs.isdigit() == True: 

  nodeTo = nodeFrom;  

elif "'" in WHEREs: # is a string  

  nodeTo = nodeFrom; 

elif "." in WHEREs: # looks like a column name  

  nodeTo = WHEREs; 

edges.append([nodeFrom, nodeTo, "PREDICATE"]); 

  

 

 

Code Listing 6.15:  Algorithm 6.10 in Python 

def buildEdgeArray (sqlQueryA): 

    <Code Listing 1> 

    <Code Listing 2> 

    <Code Listing 3> 

return edges; 

 

 

Fig. 6.16 shows working example output from Code Listing 6.15 using the test query from the 

beginning of this chapter. 
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Fig. 6.16:  Example screenshot from edge list builder 

 

Code Listing 6.17 shows the working implementation of Algorithm 6.11. 

 

Code Listing 6.17:  Conversion to multidimensional array 

# deduplicate edges  

foo = []; 

  for i in edges: 

    if i not in foo: 

      foo.append(i); 

  edges = foo;   

 

# get distinct list of nodes from edges 

distinctNodes = []; 

counter = 0; 

 

for i in edges: 

  if i[0] not in distinctNodes: 

    distinctNodes.append(i[0]); 

  if i[1] not in distinctNodes: 

    distinctNodes.append(i[1]); 

 

distinctNodes.sort(); 

 

projection = []; 

intersection = []; 

member = []; 

predicate = []; 

appendFlag = 0; 

 

# build the projection list: 

for i in distinctNodes: 

  for j in distinctNodes: 

    for k in range (0, len(edges)): 

      if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "PROJECTION": 

        projection.append([i,j,1]); 

        appendFlag = 1; 

    if appendFlag == 0: 

      projection.append([i,j,0]); 
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    appendFlag = 0; 

 

# build the intersection list  

for i in distinctNodes: 

  for j in distinctNodes: 

    for k in range (0, len(edges)): 

      if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "INTERSECTION": 

        intersection.append([i,j,1]); 

        appendFlag = 1; 

    if appendFlag == 0: 

      intersection.append([i,j,0]); 

    appendFlag = 0; 

 

# build the member list  

for i in distinctNodes: 

  for j in distinctNodes: 

    for k in range (0, len(edges)): 

      if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "MEMBER": 

        member.append([i,j,1]); 

        appendFlag = 1; 

    if appendFlag == 0: 

      member.append([i,j,0]); 

    appendFlag = 0; 

 

# build the predicate list  

for i in distinctNodes: 

  for j in distinctNodes: 

    for k in range (0, len(edges)): 

      if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "PREDICATE": 

        predicate.append([i,j,1]); 

        appendFlag = 1; 

    if appendFlag == 0: 

      predicate.append([i,j,0]); 

    appendFlag = 0; 

 

# merge the lists into a cube  

cube = []; 

cube.append(projection); 

cube.append(intersection); 

cube.append(member); 

cube.append(predicate);  

 

 

Code Listing 6.17 can then be wrapped in a function, as shown in Code Listing 6.18: 

 

Code Listing 6.18:  Functionalised adjacency cube build code 

def buildAdjacencyCube(edges): 

 <Code Listing 6.17> 

return cube; 

 

 

This enables the process to start with an input, sqlQueryA, turn it into an edge list, and transform 

the edge list into an adjacency cube through two function calls. 

Note that ‘cube’ is a nested list.   
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• Level 0:  Contains 4 lists, one for each NodeFrom/NodeTo/Value tuple. 

• Level 1:  Contains a NodeFrom/NodeTo/Value tuple. 

 

To refer to or query a particular element (Python is zero-indexed), as an example:  

> print(cubeA[2][8])   

 

['A.x', 'A', 0] 

 

There are 64 (square of 8 distinct nodes) lists in Level 1 multiplied by 4 attribute types in level 0, 

equalling 256 values in the adjacency cube for the test query. 

 

6.4 Experimental Design  

 

Microsoft SQL Server was used to write a SQL script to generate 1,000 SQL queries, ranging in 

complexity.  For each of the queries, the code was augmented with exception handling and 

performed two sets of tests; the first, to establish the proportion of queries for which the 

implementation is able to parse without error, a simple statistical count; and the second, the 

duration of the process in milliseconds, to assess how much overhead the process might place on an 

RDBMS if implemented as an augmentation.  

The testing in this area is tightly bound with the experimental design and testing presented in 

Chapter 7 (similarity scoring).  The algorithms are used from this chapter in the larger round of 

testing against real-life data in Chapter 7, and to that end the random query generator was 

employed for this set of tests suitable for further use against the real-life data examined later, 

namely Chicago crime data by geographic region in a limited range of years.  More information on 

this data set is presented in Chapter 7. 

The code listing for the SQL-based random query generator is shown in Code Listing 6.19. 

 

Code Listing 6.19:  Random query generator for Chicago crime data 

 
SET NOCOUNT ON  

GO 

 

DROP PROCEDURE IF EXISTS dbo.chicagoQueryGenerator  

GO  

 

CREATE PROCEDURE dbo.chicagoQueryGenerator  

AS BEGIN 

 

DECLARE @columnCount TINYINT  

DECLARE @counter TINYINT = 0 
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DECLARE @thisColumn VARCHAR(255) 

DECLARE @select VARCHAR(500) = 'SELECT ' 

DECLARE @used TABLE ( [name] VARCHAR(255) ) 

 

SET  @columnCount = CEILING((  

               SELECT       TOP 1 c.[column_id]  

               FROM         sys.columns c 

               INNER        JOIN sys.tables t ON c.object_id = t.object_id  

               WHERE        t.[name] = 'chicagobase'  

               ORDER        BY NEWID() ) / 2.0) 

 

WHILE @counter < @columnCount  

BEGIN 

 SET @thisColumn = (  

        SELECT      TOP 1 c.[name]  

        FROM        sys.columns c 

  INNER       JOIN sys.tables t ON c.object_id = t.object_id  

  LEFT        JOIN @used u ON c.[name] = u.[name]  

  WHERE        u.[name] IS NULL  

  AND          t.[name] = 'chicagobase'  

  ORDER BY NEWID() )  

 INSERT INTO @used VALUES ( @thisColumn ) 

        SET @select = @select + @thisColumn + ', ' 

        SET @counter += 1  

 END  

 SET @select = LEFT(@select, LEN(@select) - 1) + ' ' 

 

 DECLARE @from VARCHAR(500) = ' FROM chicagoBase' + ' '  

 

 DECLARE @where VARCHAR(500) = 'WHERE (1=1)' + ' '  

 -- pick a random number of where clauses, between 0 and 2 

 DECLARE @numOfWheres TINYINT = ( SELECT ABS(CHECKSUM(NEWID()) % 3 ) ) 

 DECLARE @colName VARCHAR(255), @dType VARCHAR(255), @val VARCHAR(255) 

 DECLARE @operator TINYINT, @letters TINYINT 

 WHILE @numOfWheres > 0  

 BEGIN  

  -- pick a random column from the chicagoBase table  

  SELECT @colName = c.[name], @dType = y.[name]  

  FROM sys.columns c  

  INNER JOIN sys.types y ON c.system_type_id = y.system_type_id  

  WHERE c.object_id = OBJECT_ID('chicagoBase')  

  AND  c.column_id = ( SELECT ABS(CHECKSUM(NEWID()) %  

    ( SELECT COUNT(*) FROM sys.columns c  

                              WHERE c.object_id = OBJECT_ID('chicagoBase') ) + 1 )  

  ) 

  

  -- now select a random value corresponding to the datatype of  

              -- the randomly chosen column 

  IF @dType = 'bit' SET @val = CAST(ABS(CHECKSUM(NEWID()) % 2) AS 

VARCHAR(255)) 

  IF @dType LIKE ('%tinyint%')  

                  SET @val = CAST(ABS(CHECKSUM(NEWID()) % 255) AS VARCHAR(255))  

  IF @dType = 'datetime'  

                  SET @val = '''' + CONVERT(VARCHAR, 

DATEADD(MINUTE,(ABS(CHECKSUM(NEWID()))  

                  % 2629800) * -1, GETDATE()), 120) + '''' -- any time in last 5 years  

  IF @dType IN ('decimal', 'numeric', 'float') SET @val =          

                 CAST((ABS(CHECKSUM(NEWID())) % 5000) +  

                 ((ABS(CHECKSUM(NEWID())) % 100)/100.0) AS VARCHAR(255))  

  IF @dType IN ('varchar') BEGIN  

   SET @val = '' 

   SET @letters = ABS(CHECKSUM(NEWID())) % 10 + 1  

   WHILE @letters > 0 BEGIN 

    SET @val = @val + CHAR(ABS(CHECKSUM(NEWID())) % 26 + 96)  
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                            -- up to 10 random lowercase ASCII characters 

    SET @letters -= 1 

   END  

   SET @val = '''' + @val + '''' 

  END  

 

  -- construct the WHEREs  

  SET @operator = ABS(CHECKSUM(NEWID())) % 4 + 1 

  SET @where = @where + 'AND ' + @colName + ' ' +   

   CASE WHEN @operator = 1 THEN '='  

    WHEN @operator = 2 AND @val NOT LIKE ('%''%') THEN '>'  

    WHEN @operator = 2 AND @val LIKE ('%''%') THEN '='  

    WHEN @operator = 3 AND @val NOT LIKE ('%''%') THEN '<'  

    WHEN @operator = 3 AND @val LIKE ('%''%') THEN '='  

    WHEN @operator = 4 THEN '!=' END   

  SET @where = @where + ' ' + @val + ' ' 

  SET @numOfWheres -= 1 

 END  

 

 

 -- remove the WHERE (1=1) placeholder  

 IF @where NOT LIKE ('% AND %') 

  SET @where = REPLACE(@where, 'WHERE (1=1) ', '')  

 ELSE 

  SET @where = REPLACE(@where, 'WHERE (1=1) AND', 'WHERE')  

 

 -- concatenate into a statement 

 DECLARE @output VARCHAR(1000) = @select + @from + ISNULL(@where,'') + ';'  

 SELECT @output 

 END 

GO 

 

 

Fig. 6.20 shows a screenshot illustrating some of the generated queries: 

 

Fig. 6.20:  Randomly generated queries against the Chicago data set 
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6.5 Testing and Results 

 

First, 1,000 random queries was created using the generator against the Chicago crime data set, 

about which more details are provided in the next chapter.  Of these 1,000 queries, 947 were valid; 

53 were manually removed with parsing errors (success rate of 94.7%). 

Each query in this set was then executed against the adjacency cube generator, noting the presence 

or not of an exception after the edge list generator, and after the cube generator, respectively.  The 

duration of each conversion from query to adjacency cube was measured in milliseconds.  Table 

6.21 and Fig. 6.22 below illustrate the findings. 

 

Table 6.21:  Functional testing of query to cube transformation 

Random queries successfully generated 947 

Random queries unsuccessfully generated 53 

Success rate 94.7% 

Edge lists successfully generated 947 

Edge lists unsuccessfully generated 0 

Success rate 100.0% 

Adjacency cubes successfully generated 947 

Adjacency cubes unsuccessfully generated 0 

Success rate 100.0% 

 

 

 

Fig. 6.22:  Duration statistics for query to cube transformation 
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Of the 947 queries randomly generated, 100% were successful in edge generation and 100% were 

subsequently successful in cube generation. 

Durations ranged from 0 to 9ms in whole increments (microsecond duration granularity was 

unavailable in the test harness): the mean average duration was 1.8ms with 1.5ms standard 

deviation.  Approximately 634 executions, or 67%, completed within 1 standard deviation of the 

mean duration. 

Through examination of the output artefacts, it was noted that in some cases objects within queries 

were mis-parsed.  Most commonly, this occurred when end-of-line characters were encountered; 

where multiple JOIN conditions were specified in different syntax to that expected; and so on.  

This led to duplicate edges listed in some output artefacts, or edges listed minus the first or last 

character of their names.  Inconsistent production of MEMBERSHIPs was also noted in the slice.  

Through trial and error, most of these issues were virtually eliminated for the next round of testing, 

presented in Chapter 7, although more work is required to extend this parser to the whole range of 

SQL syntax. 

 

6.6 Conclusions 

 

A series of short algorithms were constructed to parse SQL database queries into subsets of 

projections, intersections, memberships, and predicates.  In general, the construction of the 

algorithms, the transition from algorithms to implementations, and the testing was successful; 

generation of adjacency cubes was successful and typically took place in an average of less than 2ms 

per query, well within the expected runtime of a query within an RDBMS; the principles of 

transitioning from a narrative object such as a SQL query to a comparable and computable form, 

the multidimensional array, were demonstrated; and the algorithms were demonstrated to be fairly 

robust. 

However, there were some issues encountered, particularly in parsing.  Parsers, as a superset of 

database query parsers, have a rich and detailed history in the research literature, with giants in 

the field such as Donald Knuth [2] devoting considerable years to their construction and correct 

implementation.  It is unlikely that a perfect query parser could be recreated within the confines of 

a single research project, and to that extent the artefact does not have the full range of SQL 

support that would be ideal; for example, it will not support common table expressions; non-

primitive comparison operators (IN, LIKE, BETWEEN); non-standard JOIN types, OUTER or 

CROSS APPLY operations, or JOINs with AND or OR conditions (these can be specified in the 

WHERE clause).  Occasional parsing errors in object names were observed, and in some cases 
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MEMBERSHIPs in particular were not generated correctly, although it was validated and verified 

that all other attribute types were generated successfully.  Additional whitespace, end-of-line 

characters and other terminators also frustrated the parser. 

For the benefit of better quality, in the future, the use of an industry-standard parser is proposed 

which benefits from the long tail of research and development from the community, such as GNU 

Bison [3] (used in MySQL).  The benefits of such a parser were discussed in Chapter 3, section 

3.5.3.  The outputs of such a parser, the parse tree, could be used as inputs for the adjacency cube 

generator. 

 

6.7 Chapter Summary 

 

In this chapter, the solution design for the query parser was extended, incorporating the adjacency 

cube generation mechanism, from the theoretical solution described in Chapter 5 to a set of 

algorithms.  The experimental approach to testing was outlined, generating 1,000 realistic queries 

against a data set and applying the algorithmic designs to a set of implemented scripts in Python.  

The scripts were tested against these generated queries and the rate of exceptions (0%) and the 

duration of the process (average 1.8ms per execution) were recorded.  Deficiencies were also 

observed in the implementation that are solvable either by developing the parser further to be more 

robust or incorporating an industry-standard parser which has the benefit of many years of research 

and development.  In doing so, adjacency cubes could be generated directly from the parse tree 

output.  

In the next chapter, the solution is extended into the similarity scoring mechanism and the test 

data set is further introduced.  The algorithms and code listings are incorporated from this chapter 

with extended algorithms and code for K-nearest-neighbour driven similarity scoring to present an 

implementation of the end-to-end real-time mechanism of PETAS.  The performance and outputs 

are tested, and the outcomes of the tests are presented. 
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Chapter 7 – Testing: Similarity Scoring and Schema Selection  

 

7.1 Introduction  

 

In this chapter, the ability to successfully generate adjacency cubes from input SQL database 

queries as described in Chapter 6 is assumed, and the similarity scoring mechanism and the schema 

selector as described are implemented and tested for the next part of the solution.  

As recalled from the solution design, the next steps between the generation of an adjacency cube 

and handing off a new database query to the ordinary query engine are the execution of the scoring 

mechanism to generate a score based on the similarity or otherwise between two input adjacency 

cubes; the KNN selector mechanism, which takes as input pairs of adjacency cubes and clusters 

similar adjacency matrices according to score distance; the schema classifier, which takes as input 

the adjacency cube for the query at hand and selects, using the KNN selector, the appropriate 

schema for it based on successful schema classifications of prior queries, according to score distance; 

and finally the query mapper, which works independently to adjust the query at hand to fit the 

recommended schema to ensure both syntactic and functional validity. 

 

7.1.1 Similarity scoring 

 

First, similarity scoring is addressed.  As described in Chapter 5, a relative score can be calculated 

between two adjacency cubes A and B, which consist of X-Y-Z intersections, each marked with 0 or 

1 depending on whether a relationship exists between the node-node-attribute type of the tuple, by 

comparison of the structure of each query.  This structure does not take into consideration the 

actual objects; the cube A, projecting 5 columns from relation R with no joins or predicates, would 

look structurally similar to cube B, projecting a different 5 columns from relation R.  However, 

from a structural perspective these two cubes are similar and consequently would merit a high 

similarity score.  The strictly structural approach needs augmentation with a method that 

compares the objects within the query, adjusting the score accordingly.   

First, two example queries are considered, Q1 and Q2.  These queries are listed below.  The 

adjacency cube transformation is used to turn these two queries from SQL to edge list to cube.  

This process is shown in Tables 7.1 and 7.2 below, and in Figs. 7.3 and Fig. 7.4. 
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Query 1: SELECT A.x, A.y, B.x FROM A  

INNER JOIN B ON A.z = B.z WHERE A.x = 10; 

Query 2: SELECT A.x, B.z FROM A  

INNER JOIN B ON A.y = B.y WHERE A.x < 5 AND B.y > 10; 

  

 

Tables 7.1 and 7.2:  Edge lists for Query 1 and Query 2 

 

 

 

Fig. 7.3: Adjacency cube for Query 1 

 

 

Fig. 7.4:  Adjacency cube for Query 2 

 

Next, it is illustrated how to obtain a third cube (in the solution description in Chapter 5, this is 

cube C3 where the cubes above are C1 and C2).  This is achieved by calculating the Hamming 

distance between each cube. 

As recalls Section 5.5.3 in Chapter 5, Equations (6) and (7), which are reproduced as (1) and (2) 

for this chapter, it was stated the cubes must be padded so they occupy the same dimensions, then 
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for each intersection of C1 and C2, calculation of the appropriate C3 result is done using the 

following formula (1), which simply subtracts one value from the other at each intersection and 

squares the result (which has the effect of applying an absolute function to the output, eliminating 

negative 1): 

 

 (1) 

 

 

Thus, Equation (1) is applied to the two adjacency cubes which renders the following resulting 

adjacency cube (Fig. 7.5): 

 

 

Fig. 7.5:  Resulting adjacency cube C3 

Equation (2) is now applied to calculate the similarity score – the sum of all 1s in C3 is 10, divided 

by 2 is 5 (the numerator in (2)); the cardinality of the edge list is 9 (the denominator in (2)); 

dividing 5 by 9 then subtracting this number from 1 results in 0.444 (on a scale of 0 to 1), meaning 

44.4% similarity between the queries, to 1 decimal place. 
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This process is now reproducible on-demand.  Two queries can be consumed and a single similarity 

score can be produced.  

Next, one must consider how these new functions to compare some incoming query A with all 

queries in the query cache can be used, ranking the latter using K-nearest neighbour to isolate the 

most similar queries.  In doing so, the metadata can be checked on each of those queries and a 

majority vote conducted to determine which sub-schema selection is most appropriate for query A.   

To do so, an independent query cache table is needed that can store metadata for use in the new 

process.  In this query cache, the text, assigned schema ID, mapped query text, last execution 

duration and query weight for each query can be stored.  These attributes will be used in the main 

body of the process.  
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Fig. 7.6:  Similarity scoring and query mapper process flow 
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Fig. 7.6 shows the process flow for the similarity scoring mechanism, classifier and query mapper.   

The components not yet discussed, shown in Fig. 7.6, are the KNN weighted classifier and schema 

selector; these components extend the initial presentation of the solution in Chapter 5 and are 

detailed algorithmically in the next section before demonstration through code in section 7.3. 

 

7.2 Algorithmic Implementation  

 

It is now sought to integrate the similarity scoring process into the algorithms so far for PETAS.  

To do this, the algorithms presented in Chapter 6 are extended to allow for edge list and adjacency 

cube generation for two cubes.  This is done by extending the inputs to consume sqlQueryA, 

sqlQueryB and a flag indicating which query is to be transformed into the edge list/adjacency cube.  

In doing so, code re-use is improved and wrapper code is simplified.  However, the base algorithm 

remains the same; only the inputs change, so the algorithm is not re-presented here.  Please see 

Chapter 6. 

The similarity scoring mechanism requires algorithmic illustration.  As inputs, it takes two 

complete adjacency cubes, passed as objects.  Each object is a multidimensional list or array.  As 

output, it computes a similarity score between 0 and 1 to 2 decimal places. 

Algorithm 7.7 below shows the structure of this algorithm: 

 

Algorithm 7.7:  The similarity scoring algorithm 

(inputs: cubeA of type object, cubeB of type object) 

# calculate Hamming distance 

initialise integer variable ‘hamming’ = 0 

initialise integer variable cubeAEdgeCount = 0 

initialise integer variable cubeBEdgeCount = 0 

# begin dim-0 loop 

for i in range 0 to the length of cubeA (max cubeA 0-dimension index): 

--# begin dim-1 loop 

----for j in range 0 to the length of the cubeA 1-dimension index: 

------# begin dim-2 loop  

--------for k in range 0 to the length of the cubeA 2-dimension index  

----------if cubeA (i, j, k) value is not equal to cubeB (i, j, k) value then  

------------increment hamming += 1 

----------if cubeA (i, j, k) value equals 1 then  

------------increment cubeAEdgeCount += 1 

----------if cubeB (i, j, k) value equals 1 then  

------------increment cubeBEdgeCount += 1 

------# end dim-2 loop 

----# end dim-1 loop 

--# end dim-0 loop 

initialise integer variable ‘maxEdges’, no value 

set maxEdges to the max of cubeAEdgeCount, cubeBEdgeCount 

initialise real number variable ‘similarity’ to no value 

set similarity = hamming / 2.0 divided by maxEdges, rounded to 2 d.p. 

return similarity to caller 
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This algorithm steps through the first cube of two on a dimension-by-dimension basis; for every 

value, the corresponding X-Y-Z co-ordinate in the second cube is looked-for and compared; if the 

values are not equal then the Hamming distance is incremented by 1.  For efficiency, these loops 

also count the number of edges in the cubes and set the maximum of both as the denominator of 

the similarity scoring equation.   

Next, the table structure of the new query cache used for classification and schema mapping is 

presented, shown in Table 7.8. 

 

Table 7.8:  Query cache table design 

Column Name Data Type 
Max 

Length/Value 
Description 

QueryID INTEGER 0-2^31-1 
Surrogate primary key; 

identity column. 

QueryTextOriginal NVARCHAR 
4,000 + MAX 

(row overflow) 

Holds the original query 

text. 

QueryWeight DOUBLE/REAL 

0-2^31-1  

(scale 16, 

precision 4) 

Holds a real number 

representing query weight 

to be used in the KNN 

classifier. 

AssignedSchemaID SMALL INTEGER 0-32768 

Pointer to the schema ID 

which ran this query most 

efficiently. 

QueryTextNew NVARCHAR 
4,000 + MAX 

(row overflow) 

Holds the new, mapped 

query text to the 

indicated SchemaID. 

LastExecution 

DurationSeconds 
INTEGER 0-2^31-1 

Holds the last execution 

duration of the new query 

form in whole seconds, 

rounded. 

 

In a real implementation, the query cache would require populating with recently-executed queries 

from the inbuilt query cache (or re-execute the queries as they arrive, asynchronously, and collect 

the metadata).  For the purposes of testing, this obliges the initial generation of a set of test 

queries, and the creation of a process to execute these test queries against a database, re-execute 

them against one or more alternative schemas, and collect the resultant metadata.  This process is 

not described here as it is detailed in the next section; instead, a fully-populated cache table is 

assumed,, and the presence of both a database and a list of alternative sub-schemas available to 

select from is also assumed (Chapter 8 details this dynamic schema definition process). 

Given the existence of the cache, the database and the schemas to select from, the KNN classifier is 

examined.  This runs in real-time immediately after the adjacency cube generator; the KNN 

classifier calculates the similarity score for query A against all queries in the cache, identifies the 

closest-matching queries and selects the most appropriate schema. 
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Fig. 7.9 illustrates the concept of the KNN classifier.  The beige circle is query A, the query at 

hand; all other circles are other, previously-run queries from the cache.  Each pair of query A/query 

from the cache has a similarity score, calculated using this method.  These scores are arranged on a 

1-dimensional plane.  An arbitrary K number of queries with the highest similarity scores to query 

A (here, K=3) ‘vote’ to assign a schema ID to query A; e.g., if query B has schema ID 1, query C 

schema ID 3 and query D schema ID 1, then the majority verdict is schema ID 1 and query A is 

executed against this schema. 

 

 

 

Fig. 7.9:  The KNN classifier concept 

 

Algorithm 7.10 shows first how the query cache is looped through, calculating similarity scores 

upon which to run the KNN classifier.  The availability of the ‘similarity’ function (Algorithm 7.10) 

is assumed, and the cache table, named ‘querycache’, and a list is output with the query ID for 

each query in the table and the similarity score when compared to query A. 

 

Algorithm 7.10:  Looping through the query cache 

input: queryA (SQL text of query in hand) 

 

initialise new array/list 'comparison' with no elements 

initialise new untyped variable 'similarity' 

initialise new integer typed variable 'errorCount' and set to 0 

initialise new integer typed variable 'queryXID' and set to nothing 

 

for queryX in querycache: 

 set currentQueryID to query ID of queryX in querycache table  

 try: 

    call function similarityFunction (queryA, queryX), output to 'similarity' 

    write (queryXID, similarity) as [1,2] object to array 'comparison' 

 catch: 
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    increment errorCount += 1  

 

return comparison     

  

 

Algorithm 7.10 outputs an array/table consisting of two columns, queryXID and a similarity score 

(a real number). 

This can then be used as input to the next stage, which is to find the most similar queries to the 

query at hand.  At this juncture, weighting is introduced; every query in the query cache has a 

weight attached, defaulting to 1.  The weight is looked up from the query cache table, before 

multiplying the similarity score by this weight and re-ordering the list.  The weights are affected by 

how accurate or useful the query has been previously at correctly identifying a sub-schema where 

the query runs faster than against the base schema. 

Algorithm 7.11 illustrates the process.  The output is query execution for the caller and an entry 

into the query cache process with the last execution duration time.   

 

Algorithm 7.11:  Finding similar queries 

input: 'comparison' array [2, n] comprising of a list of query IDs and similarity scores 

to query A 

 

for each query ID and similarity score pair in 'comparison': 

--fetch the 'queryWeighting' for the query ID from the query cache  

--multiply the similarity score by the query weighting  

--write back the query ID and the resulting similarity score, overwriting the active pair 

sort the array by descending similarity 

define variable k as a typed variable and initialise to 3 

define variable 'neighbours' as a typed array variable, empty  

set neighbours to be the top K dim-0 elements in 'comparison' (query IDs), as ordered 

define variable 'csv' as a typed list variable, empty  

for each query id in neighbours: 

--fetch the 'associatedSchemaID' matching query ID from the query cache  

--append the schema ID as a new element in array csv 

initialise variable 'verdict' as an empty untyped variable 

set verdict to the element in 'csv' with the highest count (cardinality) 

begin query timer 

execute the query against the schema id specified in 'verdict' 

end query timer  

write back query execution metadata to query cache table 

write back K nearest neighbours, query ID for query in hand and last execution duration 

--to table ‘querystack’ for asynchronous assessment 

 

 

Next, an asynchronous process is specified which reads the latest queries entered into the query 

stack table (the output of Algorithm 3).  The query stack table is a temporary table which stores 

the query IDs of the nearest neighbours identified and the execution time of each query.   The 

process uses this data to re-execute the query against the base schema and sends the results to 

/dev/null (no output).  The query execution is timed.  Should the query run faster against an 
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alternative schema than the base schema, the query weighting for the neighbours that specified the 

alternative schema is incremented by some constant, e.g. 0.1; else, in the vice versa case, the query 

weighting is decremented by 0.1.  With repeated executions, this promotes query importance in the 

cache for queries that most often closely match inbound queries while naturally filtering out queries 

which are singular and do not routinely match inbound queries.  Periodically, queries are removed 

from the cache that reach a certain negative threshold T. 

Table 7.12 shows the table structure for the query stack and Algorithm 7.13 illustrates this process. 

 

Table 7.12:  Query stack table design 

Column Name Data Type 
Max 

Length/Value 
Description 

rid INTEGER 0-2^31-1 
Surrogate primary key; 

identity column. 

queryTextOriginal NVARCHAR 
4,000 + MAX 

(row overflow) 

Holds the original query 

text. 

queryTextNew NVARCHAR 
4,000 + MAX 

(row overflow) 

Holds the new query text 

for the query, mapped to 

the chosen schema 

n1 INTEGER 0-2^31-1 
Pointer to the query ID of 

the first nearest neighbour 

n2 INTEGER 0-2^31-1 

Pointer to the query ID of 

the second nearest 

neighbour 

n3 INTEGER 0-2^31-1 
Pointer to the query ID of 

the third nearest neighbour 

nk INTEGER 0-2^31-1 
Pointer to the query ID of 

the kth nearest neighbour 

lastExecution 

DurationSeconds 
INTEGER 0-2^31-1 

Duration of the last query 

execution in seconds, 

rounded 
 

 

Algorithm 7.13:  The asynchronous query weight adjustment process 

# runs periodically while table queue stack exists 

# begin loop 

if rows exist in table queuestack: 

--fetch all queries from queue stack table into list 'queuestack' 

--fetch current value of K as variable 'k' 

--for each query in queue stack: 

----fetch last execution time of query as 'lastExecutionTime' 

----for n in range 1 to k: 

------fetch query ID, last execution time for query n from query cache table  

------if last execution time of n < lastExecutionTime: 

--------set queryWeighting for query n in query cache table, decrement by 0.1  

------if last execution time of n > lastExecutionTime: 

--------set queryWeighting for query n in query cache table, increment by 0.1  

------else do nothing 

--pop query from queuestack  

--goto loop start 
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A process could be introduced to adjust the constant K, which was initially set to 3.  Looking for 

the top K queries that are most similar to the query (the nearest neighbours), a similarity value 

could be picked as the boundary condition, checking the neighbours inside the boundary and 

obtaining a majority verdict.  However, it leaves no reason why K should change – K is irrelevant 

in this scenario, it is the query weightings that are the dynamic factor here, since each query 

weighting directly affects its similarity score’s proximity to the test query.  For this reason, K is set 

to start as fixed to some low odd-numbered constant such as 3, and the top K queries sorted by 

similarity score (descending order) are skimmed.  The query weights are adjusted per execution, 

asynchronously.  This fits in with the classical definition of KNN.   

A routine is then defined that updates K like so – K gets bigger if the similarity scores returned by 

the queries tend to be high (i.e., 90th percentile).  K is adjusted to reduce if the scores are low.  

This is on the basis that high similarity scores are most likely to return an accurate prediction of 

which schema to use, so the more of them taken into account, the more accurate and useful this 

process will be.  Vice versa, if the scores are low, then if K is large then the potential for error in 

schema selection also increases.  This is done asynchronously i.e., periodically regardless of how 

many queries are being processed. 

Algorithm 7.14 illustrates the K-adjustment process.  It is assumed K can be looked up from the 

data layer, for example as a constant in a control table. 

 

Algorithm 7.14:  Adjusting the value of K 

define low threshold LT as a typed real number  

define mid threshold MT as a typed real number 

define high threshold HT as a typed real number 

define lowK as a typed real number 

define midK as a typed real number 

define highK as a typed real number  

# assuming existence of K in e.g. table 'kvalue'... 

set LT = 0.6 

set MT = 0.7 

set HT = 0.8  

set lowK = 3 

set midK = 5  

set highK = 7 

fetch mean of similarity scores currently in cache  

if mean >= LT and mean < MT: 

--set K = lowK  

if mean >= MT and mean < HT: 

--set K = midK 

if mean >= HT: 

--set K = highK 
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Finally, a process is required to map the query in hand (queryA) to the schema ID chosen by the 

process.  Several factors are relied upon here; first, that the similarity scoring algorithm will tend to 

choose schema recommendation queries similar to the query in hand and as such, the chosen sub-

schemas will contain all the tables, columns and rows required to service the query.  If this is not 

the case, then the base schema is chosen as default and the query executed as normal.  Secondly, 

mapping is highly dependent on the schemas output by the dynamic schema mapping process (see 

Chapter 8).  In the practical implementation, four sub-schemas are derived from a base schema by 

a simple 2-way sharding and partitioning algorithm to effectively quarter the data and it was found 

a large majority of queries were mapped correctly.  This behaviour is expected to be exhibited in a 

real-world environment.   

However, in Chapter 8 a more advanced query mapper component was presented where new 

schemas are generated according to query execution history, queries are mapped to the new schema 

versions and restructured to be syntactically valid, and where additional execution metadata is 

collected to create and destroy sub-schemas asynchronously such that there exist a constantly 

mutating set of sub-schemas from which the query selection mechanism can choose.  For this 

reason, the presentation of the query mapper is deferred to the next chapter.  In a full 

implementation, the appropriate mapped query can be chosen from the generated mapped query 

from the dynamic schema process or generated on-the-fly using the same methodology.  

This concludes the algorithmic implementation of this process.  Please refer to the flowchart in Fig. 

6 for an overview of how all the components interact together.  Section 7.3 presents the practical 

implementation of these components. 

 

7.3 Practical Implementation 

 

The code is first presented to calculate a similarity score from two input cubes.  This is written in 

Python and corresponds to Algorithm 7.7.  Sample wrapper code is also provided, demonstrating 

how to call each function in turn to move from SQL query, to edge list, to adjacency cube, and 

finally to similarity score given a second query. 

The code listings are extensive and so are provided in Appendix D. 

Next, an implementation of Algorithm 7.10 is presented, the process that loops through the query 

cache and calculates similarity scores for each pair of queryA and the member of the cache table at 

hand.  This is a Python implementation using PostgreSQL as the data persistence layer, and is 

shown in Appendix D, Code Listing 2. 
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Next, similar queries are found for a given queryA and a set of similarity scores output by 

Appendix D, Code Listing 2, finding the most appropriate schema to run queryA against by 

majority verdict, execute the query and output the metadata to the query stack table and query 

cache table.  This is done using Python and PostgreSQL for the data layer and the implementation 

is given in Appendix D, Code Listing 3, which maps to Algorithm 7.11. 

Appendix D, Code Listing 4 shows the query cache, K-table and query stack table CREATE 

TABLE definitions in PostgreSQL. 

Finally, the Python code for adjusting query weightings in the query cache table, reflecting 

Algorithm 7.13, is presented in Appendix D, Code Listing 5, written in Python for PostgreSQL. 

In the next section, the test data set is described, together with the process of setting up the query 

tables, creating sample queries, creating sample sub-schemas, mapping the queries, setting weights, 

and configuring the environment.  A working implementation for most of the design is presented, 

with some minor deviations and exceptions, and the experiments and outcomes are shown.  

 

7.4 Experimental Design  

 

PostgreSQL on Debian was chosen as the experimental framework, as the Debian platform offers 

side-by-side Python functionality (which is also installed) and the stack is entirely open-source 

which removes proprietary barriers and licensing concerns.  The test environment is a Microsoft 

Azure virtual machine, size A0, with 0.75 cores allocation and 1GB RAM.  This is a modest 

machine size chosen to highlight whether this process can be viable without excessive use of system 

resources.   

The data set identified for testing is the same data set used for schema classification - the Chicago 

crime set, available for free in its raw form [1].  This data set was chosen as it has three principal 

advantages: 

• It comprises of a sizeable amount of data which is more likely to take measurable time to 

execute against, increasing the accuracy of any test results  

• It is a simple structure but can be split out to separate tables with relative ease  

• It is interesting and current (updated daily) 

The following link from the website allows for direct download of the data from the Public Safety 

dataset [1] via wget: https://data.cityofchicago.org/api/views/ijzp-

q8t2/rows.csv?accessType=DOWNLOAD 

 

This was downloaded and saved as /home/../chicago/chicagoRaw.csv. 

 

https://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD
https://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD
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The Chicago data is a single table split into 22 columns.  There are (at the time of writing) 

~6,490,000 rows of data.  The file is ~1.42GB in size.  The columns are described in Table 7.15: 

 

Table 7.15:  Description of the Chicago Public Safety data set 

Column 

Name 

Description Type 

ID Unique identifier for the record. Number 

Case Number The Chicago Police Department RD Number (Records Division 

Number), which is unique to the incident. 

Plain Text 

Date Date when the incident occurred. this is sometimes a best 

estimate. 

Date & Time 

Block The partially redacted address where the incident occurred, 

placing it on the same block as the actual address. 

Plain Text 

IUCR The Illinois Uniform Crime Reporting code. This is directly 

linked to the Primary Type and Description. See the list of 

IUCR codes athttps://data.cityofchicago.org/d/c7ck-438e. 

Plain Text 

Primary Type The primary description of the IUCR code. Plain Text 

Description The secondary description of the IUCR code, a subcategory of 

the primary description. 

Plain Text 

Location 

Description 

Description of the location where the incident occurred. Plain Text 

Arrest Indicates whether an arrest was made. Checkbox 

Domestic Indicates whether the incident was domestic-related as defined 

by the Illinois Domestic Violence Act. 

Checkbox 

Beat Indicates the beat where the incident occurred. A beat is the 

smallest police geographic 

areahttps://data.cityofchicago.org/d/aerh-rz74–each beat has a 

dedicated police beat car. Three to five beats make up a police 

sector, and three sectors make up a police district. The Chicago 

Police Department has 22 police districts. See the beats at 

https://data.cityofchicago.org/d/aerh-rz74.  

Plain Text 

District Indicates the police district where the incident occurred. See the 

districts athttps://data.cityofchicago.org/d/fthy-xz3r. 

Plain Text 

Ward The wardhttps://data.cityofchicago.org/d/sp34-6z76(City 

Council district) where the incident occurred. See the wards 

athttps://data.cityofchicago.org/d/sp34-6z76. 

Number 

Community 

Area 

Indicates the community area where the incident occurred. 

Chicago has 77 community areas. See the community areas 

athttps://data.cityofchicago.org/d/cauq-8yn6. 

Plain Text 

FBI Code Indicates the crime classification as outlined in the FBI's 

National Incident-Based Reporting 

Systemhttp://gis.chicagopolice.org/clearmap_crime_sums/crime

_types.html(NIBRS). See the Chicago Police Department listing 

of these classifications at 

http://gis.chicagopolice.org/clearmap_crime_sums/crime_types

.html. 

Plain Text 

https://data.cityofchicago.org/d/aerh-rz74
http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html
http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html
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X Coordinate The x coordinate of the location where the incident occurred in 

State Plane Illinois East NAD 1983 projection. This location is 

shifted from the actual location for partial redaction but falls on 

the same block. 

Number 

Y Coordinate The y coordinate of the location where the incident occurred in 

State Plane Illinois East NAD 1983 projection. This location is 

shifted from the actual location for partial redaction but falls on 

the same block. 

Number 

Year Year the incident occurred. Number 

Updated On Date and time the record was last updated. Date & Time 

Latitude The latitude of the location where the incident occurred. This 

location is shifted from the actual location for partial redaction 

but falls on the same block. 

Number 

Longitude The longitude of the location where the incident occurred. This 

location is shifted from the actual location for partial redaction 

but falls on the same block. 

Number 

Location The location where the incident occurred in a format that allows 

for creation of maps and other geographic operations on this 

data portal. This location is shifted from the actual location for 

partial redaction but falls on the same block. 

Location 

 

(Table adapted from ‘Columns in this dataset’ [1]) 

 

First, a recipient table is created to stage the data from the CSV file.  The columns have been 

slightly renamed to remove whitespace and avoid reserved words, and appropriate datatypes have 

been chosen where possible: 

 

 

CREATE TABLE chicagobase (  

        rid INTEGER,  

        rcaseNumber VARCHAR,  

        rDate TIMESTAMP,  

        rBlock VARCHAR,  

        rIUCR VARCHAR,  

        rPrimaryType VARCHAR,  

        rDescription VARCHAR,  

        rLocationDescription VARCHAR,  

        rArrest BOOLEAN,  

        rDomestic BOOLEAN,  

        rBeat VARCHAR,  

        rDistrict VARCHAR,  

        rWard INTEGER,  

        rCommunityArea VARCHAR,  

        rFBICode VARCHAR,  

        rxCoordinate INTEGER,  

        ryCoordinate INTEGER,  

        rYear SMALLINT,  

        rUpdatedOn TIMESTAMP,  

        rLatitude DOUBLE PRECISION,  

        rLongitude DOUBLE PRECISION,  

        rLocation VARCHAR ); 
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The data was loaded into the table using the \copy command in the psql client like so: 

  \copy chicagobase FROM '/home/del/chicago/chicagoRaw.csv'  

      WITH (FORMAT csv, DELIMITER ',', HEADER); 

A base schema was created consisting of one table, chicagobase.  Another schema is then created 

which splits the data horizontally (partitioning) and vertically (sharding) to create 4 tables as 

shown in Fig. 7.16, with the verticals linked on rID as primary key. 

The partition tables will be called 'Alpha' and 'Beta' accordingly - Alpha before the midpoint of 

rDate, and Beta after.  The shards will be called CrimeType and CrimeLocation.  For example, the 

fourth table in Fig. 7.16 below is called 'CrimeLocationBeta': 

 

 

Fig. 7.16:  Chicago data split into sub-schemas 
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There are benefits to choosing this split: 

 

• Queries which draw from only a selection of columns within a particular shard need use 

only the respective shard and not the full base schema 

• Queries which draw only a limited set of row data may be able to use a particular 

partition rather than full scans of the base schema 

• Crime type data (e.g. description, case number) is contextually separated from location 

data, which should result in better performance for queries which only need one or the 

other. 

 

The statements to create and load these tables from the base schema in PostgreSQL are shown in 

Appendix D, Code Listing 6. 

 

If a count is now issued of the populations of the tables, the data is shown to have been split 

between the two partitions alpha and beta (row count), and the two partitions, CrimeType and 

CrimeLocation (columns are split), making four tables in total.  Fig. 7.17 shows the counts. 

 

SELECT 'chicagoCrimeTypeAlpha', COUNT(*) FROM chicagoCrimeTypeAlpha  

UNION ALL  

SELECT 'chicagoCrimeTypeBeta', COUNT(*) FROM chicagoCrimeTypeBeta  

UNION ALL  

SELECT 'chicagoCrimeLocationAlpha', COUNT(*) FROM chicagoCrimeLocationAlpha 

UNION ALL  

SELECT 'chicagoCrimeLocationBeta', COUNT(*) FROM chicagoCrimeLocationBeta;  

SELECT COUNT(*) FROM chicagoBase; 

 

 

 

Fig. 7.17:  Table cardinalities in the Chicago sub-schemas 



 

- 116 - 

 

 

 

K-nearest neighbour is an interval-based machine learning classifier.  These types of classifiers can 

be used in unsupervised learning; however, the approach used here is a slight modification - it is a 

selection of neighbours using KNN, but a majority verdict of the classification decision to make 

based on the classification decisions of those selected neighbours.  Therefore, a set of labelled 

training data already in the cache is required - the more queries, the better; also, the weights need 

to be pre-set, and likewise the value of K. 

For any query, there are two schemas to choose from - the single-table schema and the four-table 

schema.  For testing purposes, some queries are required (to be written or generated) on one of 

these schemas.  These are written on the single-table schema first before deriving the 4-table 

equivalents, since this will allow an opportunity to fully test the similarity algorithm in both 

directions.   

These queries are then labelled by hand with what are believed to be the most appropriate schema 

for it; then this information is recorded into the cache.  This produces a set of training data. 

It was necessary to write a random query generator specifically for this data set.  This query 

generator was mentioned in an earlier chapter, and outputs from it were used to test the query 

representation algorithms.  This is presented in full in Appendix D, Code Listing 7.  SQL Server 

was used, as PostgreSQL did not have query variable support, and it was necessary to construct 

SQL dynamically and with complex methods such as side-effecting random variables.   

This query generator is used for test purposes and does not form part of the novel contribution to 

knowledge, so the algorithm is not presented here; in brief, it generates random values to fit a 

variety of domains and data types for a series of columns passed into it from the Chicago base 

tables. 

Next, for the purposes of testing, a new stored procedure was created which would generate the 

equivalent query against the alternative schema (the version with 4 tables).  To do this, a 

determination of whether columns in the query belonged to crimeType, crimeLocation or both was 

made; and it was determined, in the case where rDate was a predicate, whether the date indicated 

fell before, or after, the median (so as to determine whether to use the alpha partition or beta 

partition).  If rDate isn’t a predicate then a UNION ALL is necessary.  

Again, using SQL Server, this mapping was possible programmatically as shown in Appendix D, 

Code Listing 8.  A table-valued function (a function that returns a result set, also known as a 

TVF) was created that takes a single statement as input, creates the alternative schema, and 

returns both the original and new statements as output.  
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This function is used in a CROSS APPLY to generate as many queries as necessary; the example in 

Appendix D, Code Listing 9, written in T-SQL, uses the function above to generate 1,000 queries.  

Fig. 7.18 illustrates the output. 

 

 

Fig. 7.18:  Output from the random SQL query generator 

 

From here, the training data requires importing into the QueryCache table along with some other 

information – query weightings, which are all initially set the same; and NULL for query execution 

time.  A decision is needed for each query on which schema would be most appropriate for the 

query, which was done automatically according to the following heuristics. 

 

Rule 1 

IF query uses BOTH partitions (alpha and beta)  

AND query uses BOTH shards (type and location): 

 Use base schema  

(on the basis that no savings will be made using the 4-table schema so the base schema will 

be quicker) 

 

Rule 2 

IF query uses BOTH partitions (alpha and beta)  

AND ( query uses type shard XOR query uses location shard): 

 Use base schema  

(on the basis that the UNION ALL is redundant and so the base schema will be quicker) 

 

Rule 3 

IF query uses the alpha partition XOR query uses the beta partition  

AND query uses BOTH shards (type and location):  

 Use 4-table schema  

(on the basis that the row count is divided in 2 so the seek time should be lower across the 

rows)  

 

Rule 4 

IF query uses the alpha partition XOR query uses the beta partition  

AND query uses the type shard XOR query uses the location shard: 

 Use 4-table schema  

(on the basis that the 4-table schema presents the smallest possible set so should be quicker) 
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First, the data was imported, leaving aside lastQueryExecutionTime and AssignedSchemaID, 

setting all weights to 1, to the QueryCache table in PostgreSQL: 

 

INSERT INTO querycache 

  SELECT  t.rid, t.stmt, 1.0, NULL, t.alt, NULL 

  FROM    public.trainingdataraw AS t 

  ORDER   BY t.rid; 

 

 

Finally, a cursor was created which would loop through all the query pairs now in QueryCache.  

For each query pair, the cursor would a) select a schema using the rules above and b) execute the 

requisite query (for the schema) and finally record the query execution time in 

LastQueryExecutionTime.  In this way, the QueryCache table was populated and the training data 

is ready to use. 

The test data is stored in the TestDataRaw table for use during the testing, documented in the 

next section. 

  

7.5 Testing and Results 

 

Several subprocesses have been defined that form the similarity scorer and schema mapper.  In this 

section, the tests are specified and the results are shown for various units within the process and for 

the process in the main. 

Firstly, the similarity scoring mechanism is tested with 5 pairs of queries, to get an indication on 

whether this process is viable.  The queries are listed in Appendix D, Code Listing 10, in a test 

harness written in Python against the similarity function. 

These queries were chosen (also in column 2, Table 7.20) to illustrate a range of similarities.  The 

first query pair are structurally and functionally identical; the final query pair are structurally 

similar but the objects are completely dissimilar and so should not generate a high similarity score. 

The results are shown in Table 7.19. 

A low deviation in the results from the expected scores (the hypotheses) is noted, indicating 

optimism that the algorithm is returning results in an expected range.  
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Table 7.19:  Results from similarity scoring process testing 

 

 

Some limitations were noted with the implementation, particularly: 

• No support for nested queries e.g. subqueries or CTEs 

• Limitation on complex JOIN and WHERE conditions 

• WHERE clauses limited to AND or OR (no support for constructs like BETWEEN or 

IN) 

 

The suitability of the solution for the full range of allowable ANSI-SQL is discussed in the 

conclusions. 

Next, the query generator function was tested against 10 sets of 1,000 queries (which were 

generated using the random query generator function), with the aim to discover how many, if any, 

alternative mapped queries failed to be generated by this process; or, the failure rate.  Table 7.20 

shows the results. 
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Table 7.20:  Failed query mappings 

 

 

With each run consisting of 1,000 queries, the average failures were 46.8 queries per 1,000 queries; a 

failure rate of 4.7%.  This is an optimistic result, as the converse view is that 95.3% of queries were 

mapped successfully.  More work is required on the implementation to converge this percentage to 

100%. 

Next, it was observed if the queries generated and their alternatives all executed correctly, i.e. they 

are syntactically and functionally valid.  To do this 4-table schema was recreated in Microsoft SQL 

Server (empty of data), then a cursor was used to iterate over each query pair, executing each in 

turn.  If both executed without erroring, the query pair was marked as valid. 

The SQL code to do this is shown in Appendix D, Code Listing 11. 

It was here that some severe issues with the method were noticed.  The ‘good’ queries numbered 

only 163 of 1000 (16.3%), a failure rate of 83.7%.  There were periodic system crashes as the system 

struggled to cope with executing 1,000 queries and rendering the result sets.  It was determined 

that the problem was that some columns SELECTed in the alternative query didn’t exist in the 

shards of the table selected (i.e. ‘rYear’ exists in the type shard, not the location shard so a query 

against the location shard that specifies this column would fail).   

After some consideration, it was realised there were several problems – the first problem lay in the 

shard flag settings of my query generator – rYear was missing.  The following line was added: 

 

OR  @inboundQuery LIKE ('%rYear%') 

 

The second problem was the LocationDescription column was missing from the 

LocationAlpha/Beta tables.  This was added in a similar manner. 
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The third problem was that code after the UNION ALL was JOINing between the LocationBeta 

and LocationBeta tables instead of the TypeBeta and LocationBeta tables, a result of a simple 

typographical error.  This section was amended to: 

 

REPLACE(@outboundQuery, 'chicagoCrimeTypeBeta a  

INNER JOIN chicagoCrimeLocationBeta b ON a.rid = b.rid', 

'chicagoCrimeTypeBeta a  

INNER JOIN chicagoCrimeLocationBeta b ON a.rid = b.rid') 

 

The fourth problem was that the ‘rid’ column was ambiguous when included in the SELECT, since 

aliases are not being used.  The code was amended so all FROMs were aliased, and a section was 

added to explicitly replace rid and rDate SELECTs with the same plus appropriate aliases.  This is 

not an elegant solution but given this code doesn’t form a core part of the solution (only the test 

harness) the workaround does not undermine the design. 

The fifth problem was the second half of queries containing UNION ALL was identical in some 

circumstances to the first half of the query.  This was traced back to two mis-specified @variables, 

and fixed this issue. 

The sixth problem was that some queries were generated that broke data typing rules i.e. with 

WHERE predicates like this - … WHERE rid = ‘some string’ when rid is an INT.  This was due to 

the omission of a line dealing with the INT datatype in the QueryGenerator procedure, which was 

subsequently added. 

The seventh problem was the occasional appearance of the single quote ‘ in literals used in the 

WHERE clause.  Adding a REPLACE clause to replace in-data instances of single quotes fixed this 

issue. 

 The test query count to was lowered 100 to counteract the system resources problem, batching it 

to run 10x times to get the 1,000 queries desired per run. 

Retesting with these fixes, this yielded a failure rate of nil; or 100% ‘good’ queries, discounting 

NULL-valued alternatives.   

These were exported to PostgreSQL in the test instance.  954 queries were exported by way of a 

training set, and another 955 for testing purposes, overcoming the crashing issue when generating 

queries by executing at the command line.  Export to flat file was done via the Import and Export 

utility in SSMS (SQL Server) from the dbo.TrainingData and dbo.TestData tables (where the 

output was stored from the above).  The data was then imported using the tools provided by 

DataGrip (the PostgreSQL IDE in use) directly from the flat files. 
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Next, with the training and test data sets in PostgreSQL, the test outcomes from running the 

process end-to-end are presented; both the synchronous element (real-time query processing using 

adjacency cube generator, similarity scoring, schema selection and query mapping), and the 

asynchronous element (updating query metadata including weightings and execution times). 

These tests were conducted using the scientific method.  Table 7.21 describes the battery of end-to-

end tests. 

 

Tests 1, 2 and 3:  10 new SQL queries were generated and the matrix parser implementation was 

ran against them using the whole metadata cache, running the process at the individual level, 

whole-query level and whole-batch level to ascertain timings, which amounted to 9,520 executions 

of the algorithm.  The processing time was found to be highly variable, with a mean average of 

54ms per Q/Qx comparison and a standard deviation from the mean of 25ms.  Error handling was 

introduced in the test harness but errors at this stage were nil.  The range of the durations varied 

between 278ns and 158ms.  These results are shown individually and grouped by query in the 

diagrams in Figs. 7.22(a) and 7.22(b).  The variance between queries is clearly visible by the 

column height differences shown in Fig. 7.22(a) and the differences in the mean markers in Fig. 

7.22(b). 

 

Test 4:  This was to ascertain whether queries running under PETAS executed faster on average 

than queries using only the normal execution process.  This test was scoped – the aim was to 

measure whether using schema selection resulted in overall faster execution, rather than testing the 

end-to-end process.  Tests 1-3 highlighted an issue in the implementation of the classifier – queries 

were taking, on average, 54ms to be compared against each neighbour, the delay mostly due to 

iteration when parsing the query into the matrix.  This scaled up to a significant and unviable 

delay per query execution.  It is envisioned that further development of this functionality could 

result in significant improvements, for example by storing matrices in the metadata rather than 

enforcing recalculation; limitation to some n sample of potential neighbours rather than the full set; 

rework of the algorithm implementation to use parallel threads; and looking into more efficient 

mathematical models for matrix calculations. 
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Table 7.21:  Test descriptions 
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Fig. 7.22(a) and 7.22(b):  Processing time (ms) per query and per run (batch) 
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However due to this 54ms delay, it was necessary to exclude from scope this overhead for test 4.  

The number of Q/Qx comparisons were also limited to 50, selected randomly from the cache.  

Doing so meant that a) it was less likely that an improvement in query classifier accuracy would be 

recorded because the K-nearest neighbours in a sample of 50 would be less accurate (have lower 

scores) for Q/Qx than the K-nearest neighbours in the full query set; and b) any multiple increase 

in individual query weights would be dependent on the query being sampled more than once.  By 

sampling 50 from approximately 950 queries, the probability of selection is approximately 0.052 

rather than 1, therefore dampening any classifier improvement as a result. 

Using the pool of 952 test queries Q against 50 Qx queries drawn randomly (47,600 comparisons), it 

was found that 47.9% of queries were classified to the alternative schema and the remainder to the 

base schema.  In order to ensure test validity, the timings for all queries were re-ran against the 

base schema only and an unexplained deviance was noticed in the average query execution time of 

+9.9%, consequently labelled D and corrected for in the analyses.  The deviance is attributed to 

unrelated background operating system activity stemming from the use of cloud, rather than fixed, 

computing resources. 

The results of running these queries were a mean reduction in query execution time of 6.2% for all 

queries regardless of schema assignation, and a reduction in query execution time of 20.6% for 

queries executed against the alternative schema.  Fig. 7.23 shows these cost savings for all queries.  

The upper trendline indicates the mean original query execution time (with D correction) and the 

lower trendline indicates the mean query execution time with schema selection.   

 

 

Fig. 7.23:  Cost savings (execution time in ms) per query, per schema 
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Test 5:  This test was to check the error count of the test queries from test 4.  Ideally there would 

be no errors in execution.  There were 8 queries of 952 found to be errored due to syntactic issues, a 

rate of 0.84%.  This reflects a limitation in the proof of concept, since as previously discussed, a full 

PETAS implementation would not rely on syntactic mapping but would map at the parse tree or 

other lower level.   

Test 6:  This test aimed to examine whether query weights in the metadata cache were being 

adjusted as part of the end-to-end PETAS process.  Some implementation issues were found which 

caused queries to be deleted from the cache before their weights were adjusted and these errors 

were corrected.   All weights were set to 1.  KNN was calculated by multiplication of S by W for 

each Q/Qx tuple.  Where a weight was adjusted, it was incremented or decremented by 0.1 for all 

current Qx in K.  The metadata cache was kept at its previous population of 952 and generated 100 

new test queries.  86 were syntactically valid, where 14 failed validation (due to weak 

implementation of the query mapper).  The 86 were ran through the PETAS process.  It was found 

that in 30 cases, members of the cache (Qx) were being incremented or decremented, of which 4 

cache members’ weights were adjusted more than once, and the range of Wx varied between 0.8 and 

1.2.  Increments and decrements were evenly split.   

This result is important because the feedback mechanism of the classifier relies on the query 

weights being adjusted, either positively or negatively.  Without this feedback, PETAS would be 

static and would not continually learn from new input.  With 86 test queries (Q) and K = 3, it was 

expected that a maximum of 252 queries in the cache (the pool of Qx) would have their weights 

adjusted.  That this adjustment happened, and that a proportion of the queries in the metadata 

cache (30 different Qx were affected) means that the KNN mechanism is working – queries (Qx) are 

being selected from the cache corresponding to the structural similarity to inbound queries (Q) and 

furthermore, are being selected multiple times, as evidenced by the ratio of 30 to the maximum 252.  

Test 7 discusses how the similarity scores are affected when the same queries are being selected 

from the cache.   

Test 7:  This final test aimed to establish whether the KNN classifier was improving its own 

accuracy through weight adjustment.  Such an improvement would manifest in mean average 

similarity scores from the matrix parser for successive Q/Qx combinations increasing over query 

iterations, as the ‘useful’ queries’ chances of selection were probabilistically increased by weighting. 

The same 86 queries Q were used as selected in Test 6, and K was set to 3, obtaining 3 similarity 

scores S1, S2 and S3 for pairs Q/Q1, Q/Q2 and Q/Q3 for each Q (a total of 258 similarity scores).  

All Sx outcomes ranged between 0.68 and 0.9.   

A modest positive correlation was found between successive query iterations and S.  Using the 

slope-intercept method, the function of this correlation can be calculated as y = 0.00035294x + 0.74 
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(see the trend line in Fig. 7.24(b)).  As an aside, using this linear formula as an approximation, it is 

possible to predict the number of queries required to be processed to achieve a specific S average 

(for y values < 1):  e.g. for S = 0.98, this formula yields an estimate of 680 queries.  Further testing 

would be required to establish the limits of this process. 

 

   

Figs. 7.24(a) and 7.24(b): Query weight distribution, and query iteration  

correlation to similarity, respectively. 

 

This concludes the testing and results.  In the next section, the conclusions from the tests are 

briefly summarised and their impact on the viability of the solution design is discussed.  

Conclusions are discussed more broadly in the final chapter. 

 

7.6 Conclusions 

 

The testing carried out demonstrates the functionality of the matrix parser and KNN classifier, 

which worked as designed and demonstrated that query performance can be improved by matching 

queries to the most appropriate schema in an approach using multiple logical data representations. 

Limitations were observed; the implementation and testing did not support the full ANSI standard, 

and the existence of an unacceptable overhead during execution was evident.  It is believed that 

these issues can be overcome by implementation improvements, for example by pre-calculating 

adjacency cubes and storing these in the metadata cache, and by replacing loop-based syntactic 

parsing methods. PETAS was demonstrated to work from the query parser through to the 

adjacency cube generation (Chapter 6), then through the similarity scoring mechanism, schema 

selector and query mapper (Chapter 7), resulting in a significant improvement of query execution 

times exceeding 20% (for over 50% of a test population) through the presentation of a choice of 

schemas and the activities of the new machine learning-led classifier.  It was also demonstrated that 

PETAS learns from experience, with the constant adjustments of weights leading to more accurate 
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query classifications and a general increase in similarity scoring, although correlations of the latter 

were weak. 

 

7.7 Chapter Summary 

 

In this chapter, the work on the transformation process from SQL query to adjacency cube in 

Chapter 6 was extended, and it was shown how the new ML-driven functions can be used to 

calculate relative similarity between two queries, or cubes, how to use this similarity measure in a 

KNN implementation to find the most similar queries from a cache to a given query, and how to 

select the most appropriate schema by majority verdict.  The process to dynamically adjust K was 

demonstrated and how query weighting can be used to give precedence to those queries which yield 

schema selections that most often result in decreased execution times, resulting in a self-learning 

methodology.  The implementation of the same components was presented, built using Python on 

Debian, PostgreSQL, and Microsoft SQL Server.  Limitations on the implementable features were 

noted, including lack of support for the full SQL standard, and the investigation showed how the 

results reflected potential performance improvements but only to a limited subset of all queries, and 

with a performance overhead manifesting as increased execution time that requires tuning out via 

an improved implementation.  

Chapter 8 presents a dynamic schema definition process which monitors inbound queries to the 

database engine, uses the metadata in the query cache to create sub-schemas based on demand, de-

allocates and destroys underused sub-schemas, and presents an alternative query mapper 

implementation.  This component can be used alongside the work presented in this chapter to 

provide various alternative sub-schemas in an asynchronous fashion, meaning manual setup of sub-

schemas as demonstrated has the potential to be fully automated.  In this way, all components of 

PETAS become fully automatable, improving the viability of this solution for further development 

into industry-standard RDBMS tooling. 
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Chapter 8 – Testing: Dynamic Schema Redefinition  

Please note that this chapter is a revised version of the research published in Colley and 

Asaduzzaman, 2020 [1].  Omitted code listings are provided in Appendix E. 

 

8.1 Introduction 

 

As the Zermelo-Fraenkel set-theoretic axioms as applied to Codd’s relational model allow for the 

expression of subsets from base sets using the axiomatic schema of separation [2], the axiom schema 

of separation can be extended into the relational database space by specifying and prototyping a 

new cross-platform technique using materialised views (MVs) for rapid, real-time schema derivation 

to reduce the query space and improve the query cost and resource use of database queries for a 

faster, more efficient transactional throughput.   

From the research and solution design, it is concluded that MVs may present a potentially viable 

solution to describing, persisting and using subset data sets as alternative derivations from the base 

schemata and used in conjunction with the query cache as an asynchronous process, provide the 

opportunity for dynamic, real-time schema derivation for better query performance.   

 

8.2 Algorithmic Implementation 

 

A high-level overview of the key components of the algorithms comprising the dynamic schema 

redefinition element of PETAS and their interfaces with the existing RDBMS query processor are 

illustrated in Fig. 8.1 (new components are in the dashed area). 

Three new processes are introduced to implement dynamic schema redefinition, dependent upon 

two new global temporary tables.  The query parser fetches queries from the plan cache and 

divides their syntax into attributes, data sources and predicates (SELECT, FROM and WHERE 

subclauses).  The create and destroy M Vs module analyses the collected queries, determines 

which are suitable for conversion to use materialised views, applies any secondary parsing (for 

example when converting parameterised/prepared queries), prepares and executes the DDL queries 

to create the materialised views, maps the parsed queries to their originals and to the MV, and 

drops any unused or invalid MVs.  The analyse query/M V use metadata module analyses the 

resultant mapped queries, analyses system metadata from the system views and plan cache, 

executes mapped queries, computes efficiency and efficiency ratios between the original and the 

mapped queries.  The temporary tables reflect some of the data from the plan cache and store all 

the information needed by the described processes to operate.   
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Fig. 8.1:  High-level overview of the dynamic schema redefinition process 

 

The data flow diagram in Fig. 8.2 illustrates the flow of data to, from and through the new 

components.  This diagram uses Yourdon-DeMarco notation [3]: 

 

 
 

Fig. 8.2:  DFD illustrating data flow in the dynamic schema solution 
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The query parser component is responsible for fetching and parsing queries from the RDBMS 

plan cache.  The query is first tokenised, the existence of the relationships is mapped between the 

components of the query then each component is classified as either a data source (relational part), 

attribute (and the associated relational part) or predicate (clause on the WHERE or JOIN 

components).  The use of these query items is then recorded by way of inserting new records to the 

query components temporary table or matching on existing components within the table and 

updating the frequency of the components’ occurrence.  

The algorithm for the query parser is shown in Appendix E, section E.1. 

 

The create/destroy M Vs component is responsible for a) identifying, through frequency analysis, 

the relational parts, attributes and predicates most commonly called and for constructing and 

implementing appropriate materialised views in the database; b) identifying those materialised 

views that are no longer required most frequently by inbound queries and destroying them.  

Improvements can be made in future by replacing or augmenting frequency analysis with total read 

count from parsing of the execution plan: 

The algorithm for the create/destroy MVs component is shown in Appendix E, section E.3. 

 

The analyse query/use M V metadata component is responsible for using the materialised view 

definitions created by the ‘Create and destroy MVs’ component to model queries from the plan 

cache, using appropriate system metadata, and to record the relative costs associated with running 

these queries against MVs versus the base schemata.  The information output is stored within the 

temporary tables for use when creating/destroying MVs and for analysis.  In a full implementation 

(where the query processor is exposed for re-engineering), this component would also be responsible 

for flagging the query to the query processor as suitable for running against the MV(s) and forcing 

it as an alternative rather than the base schemata. 

The algorithm for the analyse query/use MV metadata component is shown in Appendix E, 

section E.4. 

 

The temporary tables component is a set of tables held within the temporary 

tablespace/database of the RDBMS which enable the main processes of the schema redefinition 

process to read and write query, MV and performance data.  These are recreated on system start-

up/restart.  As a static object, there is no associated algorithm; the entity-relationship diagram in 

Fig. 8.3 illustrates the structure of and relationships between the tables used for query analysis and 

the RDBMS-provided plan cache and supplementary table-valued functions.  Crow’s-Foot notation 

[4] is used and for the plan cache, it is assumed the structure provided for in the relevant Microsoft 

SQL Server 2017 plan cache table [5].   
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The ##cs table, which is a reflection of sys.dm_exec_query_plan and derivation of the 

sys.dm_exec_query_text TVF, is not shown. 

 

 
 

Fig. 8.3:  ERD for tables involved in dynamic schema redefinition 

 

8.3 Practical Implementation 

 

To test this solution, the TPC-C benchmark data set [6] with the TPC-affiliated HammerDB open-

source tooling [7] was chosen and Microsoft SQL Server 2017 Developer Edition was used as the 

RDBMS.   

The process begins with zero materialised views and clearance of the plan cache.  The algorithms 

from Appendix E, implemented in T-SQL, are then employed – these algorithms monitor the SQL 

Server plan cache, analyse query contents and periodically maintain a rank-order summary of 

appropriate subsets of the schema within global temporary table objects.  The SQL Agent job 
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engine is used to operate this process.  At set periods, each subset is constructed and implemented 

asynchronously as a materialised view, and views which are no longer highly ranked are dropped. 

The HammerDB query simulation engine is not used out-of-the-box, since this runs just 5 different 

stored procedures with various parameters; suitable for performance testing, but unsuitable for 

analysing the impact of the algorithm due to a) the lack of variety in queries and b) the limitations 

of extracting statement-level queries from the plan cache, where procedures are aggregated as 

executions at the procedural level rather than at the statement level.  Instead, a data bank of 9,660 

different SELECT queries is used, generated from the TPC-C dataset by randomly selecting 

attributes from tables with and without different kinds of JOINs and using a datatype-appropriate 

random generation of predicates.  These queries are stored in a separate database and separately 

executed using a Python script which allows the selection of a random query, the execution of the 

query and the control of the rate of execution using an artificial delay.  All queries are unique with 

an estimated 4.48 x 1015 possible permutations across the schema (using formula nPr = n! / (n – 

r)!, assuming 94 columns and a mean average of 8 selections) ensuring the probability of exact 

query duplication from the process p = 10,000 / 4.48 x 1015 = 2.28 x 10-12 .  Multiple processes can 

be spawned to simulate parallel users if necessary.   

 

Query parser: This yields table ##q populated with current and historical queries, parsed into 

SELECT, FROM and WHERE segments at the top hierarchical level.   

Create and destroy M Vs:  This process was tested and execution was found to be consistently 

10s ± 5s (excluding the creation of indexes), with success rates in identifying and parsing queries, 

creating and testing MVs and linking queries to MVs with a typically c.68% success rate overall, 

+/- 10%. 

Analyse M Vs / use metadata:  This module is responsible for analysing the created MVs, 

extracting the query metadata from the plan cache.  This is done by extracting the query execution 

plans from the cache, parsing these plans by exploding the XML and extracting the key statistics, 

before updating the ##q_mv_link table with the query statistics.  This module also runs the new 

query versions generated against the MVs and extracting the new costs from the cache, updating 

the temporary table, to allow comparison of old and new query performance statistics on a per-MV 

basis. Finally, this module calculates the query cost and efficiency differences (the new definition of 

efficiency is used with the assumption that the appropriate ‘rows read’ parameter in the execution 

plan is accurate).   
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Temporary Tables:  The temporary tables are of the global temporary type (prefixed ##), 

resident in memory, faulting to the tempdb database, and available across all sessions/connections 

in the database instance.  This was chosen to maximise memory use, minimise disk use, improving 

performance, and avoiding metadata permanence.   

Using these new processes, the MVs can be defined but in the current experimental configuration, 

redirecting the query engine to replace the base tables referenced in inbound queries with the MVs 

as they run is not possible, as this functionality is currently unavailable in all RDBMS engines, a 

drawback shared with other academic research in this area, although forks of open-source RDBMSs 

such as PostgreSQL could theoretically be developed to support this.  The proposed solution allows 

for this by designating a component to perform this mapping and flagging operation. In lieu of this 

active replacement of queries, the same queries are re-run (while the TPC-C test load is in 

progress) that would have their references replaced against the new MVs and the number of reads 

required and query execution times against the original versions are compared in order to quantify 

any improvements in efficiency, drawing this information from the execution plans, which yields 

comparative statistics between the original queries and new queries.  This also allows the 

computation and comparison of performance statistics. 

 

8.4 Experimental Design 

 

The implementation of the algorithms was completed in an iterative fashion and component-level 

(preliminary) testing was conducted throughout, combined with end-to-end (system) testing against 

the benchmark data set.   

This section is structured into a set of preliminary observations (observations made on the success 

or limitations of the proposed solution found during implementation); and details of the test 

parameters, data and outcomes as systemic observations (observations made during end-to-end 

testing of the implementation); the results when considering storage and performance trade-offs are 

also presented, tangential to the main results. 

 

After implementing solutions from the outcomes from the preliminary testing, the first successful 

system test was conducted.  1,801 queries were executed in serial over a maximum period of 300 

seconds (actual: c.27 seconds) randomly drawn from the preassembled query bank of 9,660 queries 

that were created against the TPC-C benchmark data set.  The query parser module was run, 

which parsed the resulting 1,464 queries associated with plans in the plan cache in approximately 2 

seconds and identified 1,462 distinct queries in the raw query table ##q suitable for consideration 

for new MVs, a success rate of 99.9%.   



 

- 10 - 

 

 

The create/destroy MVs module was then executed, which identified 73 distinct non-indexed MVs 

to create, linking 1,186 queries in ##q to the new MVs in ##mv, a success rate of 65.6%.  From 

the 73 MV definitions, 53 actual non-indexed MVs were created from the definitions in ##mv, a 

success rate of 72.6%.  However, non-indexed MVs are only views, and only create an overlay which 

allows the query optimiser to access the base tables.  For improved performance, indexed MVs are 

required.  This module therefore then attempts to create the unique indexes on the identified MVs.  

It was found that of the 53 non-indexed MVs created, 6 were indexed successfully, taking a total of 

910 seconds to complete the whole module run.  The most common error encountered when 

indexing the MVs was due to the presence of OUTER JOINs (see below), the second most common 

was the presence of a duplicate primary key, and the third most common was the resulting row 

length of the MV exceeding the platform hard limit of 8,060 bytes.  Thus, the overall success rate 

from inbound query to indexed MV was 11.3%.  Table were created in lieu of indexes as per the 

comments from the preliminary testing, which resulted in 100% of defined views having indexes or 

replaced with tables.   

The analyse/use metadata module was executed to fetch costs and re-run alternative queries (new 

formulations of existing queries using the new MVs).  This resulted in the successful analysis of 332 

queries and fetching of relative costs for 171 total queries.   

For these 171 queries, the following observations were made (using mean averages): 

• 8 queries had increased in actual query costs. 

• 33 queries had decreased in actual query costs. 

• 130 queries had remained identical in actual query costs.  

• The average cost increase using the new queries was 0.7622 in real terms.  

• Estimated rows read increased, on average, by 1,261.  

• Overall query efficiency, as per the definition (see ‘Investigating Query Efficiency’), 

decreased by an average of 4.31% 

Following analysis, outliers were found in the data that skewed the mean averages significantly.  

For example, cost delta (difference between original query and new query costs) averaged 0.76 but 

had a standard deviation of 11,005.  This means that the mean averages are not representative of 

the data, and so the aggregated observations were repeated using median averages, which were all 

nil.  Given that averaging had not proven particularly useful, outliers were excluded, and the data 

was analysed between percentiles 0.05 - 0.95.  The resulting data offers some evidence that queries 

against MVs (or tables in their place) can, on count of affected queries alone, be beneficial to more 

queries than harmful to others and on balance may indicate some limited evidence of viability.  The 

tests were continued by examining those queries benefiting from the new arrangements, and the 

expected cost and read count/rows (efficiency) effects. 
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8.5 Testing and Results 

 

The solution was successfully implemented and tested this using Python as the application caller 

and Microsoft SQL Server 2017 as the database engine.  The code is listed in Appendix E. 

 

8.5.1 Preliminary observations 

 

The following observations were made during implementation and testing: 

• Due to the propensity of queries involving OUTER JOINs to be susceptible to missing rows 

when base data is added, OUTER JOINs are not supported in indexed views in Microsoft 

SQL Server [8].  A similar, but less severe, limitation exists in Oracle Database [9].  When 

it was found that the overall success rate in creating unique indexes on the views was 

relatively low, the views were stubbed by creating tables instead with a small code change.  

Although tables are not schema-bound (meaning when the base table is updated, the tables 

are updated), they provide an appropriate facsimile for MV testing.  This does, however, 

impact the overall solution strategy.  The implications of this are discussed further in the 

conclusions.   

 

• Time taken to create indexed views (where allowed) was relatively long and in some cases 

indefinite.  One of the symptoms of poor performance was identified as CXPACKET-type 

waits, due to the CREATE INDEX statements using parallelism inefficiently (8 logical 

cores were available on the test system but one node alone was used for the I/O operations 

and another to govern) and coupled with the large requirement for row reads while creating 

these indexes on views with large row counts.  Negligible actual disk use was observed 

throughout and highly variable (c. 12.5% to 100.0%) CPU use was noted.  Microsoft SQL 

Server supports parallel index operations on the CREATE INDEX statement [10] but this 

wasn’t working very successfully (over 300 parallel threads were observed on a single core 

in the preliminary testing with most other cores idle).  The lack of clustered indexes on the 

TPC-C data set was noted and, in lieu of this, and to help address performance, a set of 

database statistics covering each key on each table in this set were created.  Unique 

clustered indexes or defined primary keys to lower I/O could not be used due to the 

limitations of the data (particularly, key duplication) in the TPC-C dataset supplied by 

HammerDB. 
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• It was also noted that abortive runs of the process to create the indexed views (where the 

process hung) occurred when a CROSS JOIN was involved.  Given a CROSS JOIN outputs 

the Cartesian product of two relations, the number of rows involved can be tremendous 

before the WHERE filters are applied.  On analysis of one occasion where the process hung, 

it was noted that the CROSS JOIN of STOCK and ITEM with 5 unindexed primitive 

predicate filters resulted in 10 billion rows to store in memory, pre-filtering, and 

consequently 1 x 1010 rows in the destination index table, too many to store efficiently or 

be of any use to subsequent queries; creating this index also resulted in 100% CPU use.  

For this reason, the process was amended to exclude the consideration of queries that 

contain CROSS JOINs. 

 

• It was noted that queries with excessive numbers of predicate filters took longer to run due 

to the excessive filtering required on the table/index scans which could affect scalability of 

this solution especially for tables larger than 100,000 row cardinality. 

 

• It was noted that the new process successfully deduplicated queries, deduplicated their 

predicates and attributes, deduplicated and ignore repeated MV definitions and 

consequently ran continuously against a consistent inbound query load.   

 

• Some indexes could not be created due to the space required to store the output index, and 

the test system used wasn’t sufficiently powerful to process queries joining the columns in 

order_line (originally >1.4m rows) in a reasonable time period when a table scan was used.  

This was particularly prevalent when merge-type INNER JOINs were used with parallelism 

due to the requirement for merge-type JOINs to have pre-sorted input, and the 

computational load this entails with very large data sets.  To counter this, 50% of the 

content in order_line was removed at random to reduce the order_line cardinality to 

721,198, which did not affect database integrity since there are no foreign key dependencies 

(hard or soft) upon this table. 

 

• Related to the above, as queries are automatically generated, some query joins are illogical, 

and effectively create CROSS JOINs.  For example, the join between CUSTOMER and 

HISTORY on c_w_id = h_c_w_id is illogical since the columns relate to WAREHOUSE, 

and for all rows in both tables, all values are 1.  With 100,000 rows on each side of the 

JOIN, this amounts to a CROSS JOIN that quickly fills available disk space.  This is an 

artefact of the artificiality of the queries.  Working around this issue by imposing a TOP 

1,000,000 clause within every indexed view so there exists consistency, if not cardinality, 

between the query executed and the MV created would be appropriate to reduce output 
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rows, except that indexed views may not have row count restrictions since they become 

non-deterministic.  Instead, the row counts were calculated and each of the 10,809 queries 

originally generated were executed using a Python script, and those queries were removed 

that took longer than 20 seconds to execute from the query bank or that would result in 

more than 1m rows returned, leaving 9,660 queries available for testing, therefore 

eliminating 1,149 problem queries that could crash the index creation process further along 

the process. 

 

• It was found that the initial existence of more queries in the plan cache than were executed 

anomalous (the plan cache and buffers were cleared before testing).  Analysis of the plans 

in the cache revealed the cause to be the existence of the queries used to select individual 

queries from tpcc_queries to run, in the form SELECT query FROM 

tpcc_queries.dbo.queries WHERE id = N.  This query was not parameterised in Python 

and so iterations of N occupied the plan cache.  This was filtered out in the diagnostic and 

measurement by excluding queries containing the ‘tpcc_queries’ string, by adding a plan 

guide forcing parameterisation and by parameterising this in the pyodbc.cursor.execute() 

call in Python.  No difference is made to the test output since this query is assessed, 

deduplicated and rejected by these processes as not belonging to the database under test 

(tpcc) and through explicit filtering later in the process. 

 

• It was found that the plan cache management by the RDBMS was unpredictable.  Plans 

are stored in virtual ‘buckets’ which are stored within the cache.  Each type of plan is 

allocated to a bucket.  There is both a maximum number of items per bucket (for SQL 

Server, in the region of 160,000) and a maximum number of overall plans allowed in the 

cache, tempered with a maximum overall cache size allowed.  Microsoft SQL Server is one 

of the few mainstream RDBMS systems that does not allow direct control over the size of 

the plan cache – hence, the only adjustment possible is that of maximum server memory 

allocated to the instance, which was set to 14GB.  Of this, upon reading the system 

documentation it was indicated that 75% of the first 4GB is allocated to the plan cache 

(3GB) plus 10% of the remainder (10GB) as maximums.  It was found, however, that the 

plan cache would periodically flush on or around 2,000 plans regardless of the maximum 

memory setting.  This doesn’t present an operational issue for creating/destroying MVs 

since the query parser is run frequently to capture and store the necessary information to 

create/destroy the MVs, but it does present issues analysing the plan cache to extract 

original query metadata if the cache has been flushed before this step is applied.  

 

 



 

- 14 - 

 

 

There was no workaround to this issue by creating a ‘mock cache’ since the metadata 

extraction relies on table-valued system functions and views, the population of which over 

which there is no control.  In lieu of this, two actions were taken: a) the modification of the 

Python caller to parameterise the call to fetch a random query, saving around 25% of the 

plan cache; b) the maximisation of the memory available to SQL Server; and c) desisting 

from running the client-side Profiler tool alongside the testing, relying on simple loop 

counts instead, since it was theorised the memory required to store the Profiler data was 

being reallocated from SQL Server by the operating system, with the plan cache the first 

casualty.  Although turning on the ‘optimize for ad hoc workloads’ setting was considered, 

which would leave stubs for single-use plans in the cache rather than full plans, it was 

found this would not be suitable for plan performance metadata extraction.  Finally, after 

some trial and error, a ‘hard stop’ of 1,800 successful executions was put in the Python 

caller to maximise cache population before flush. 

 

• To ensure that the query runtime statistics were available before cache flush and unaffected 

by the subsequent process code, these statistics were dumped into the ##cs table 

immediately prior to query parsing and the Analyse/Use Metadata module was amended to 

use this table rather than the system views. 

 

8.5.2 System testing 

 

5 successful end-to-end system tests were completed and the data compiled from each of the stages 

into the summaries and the series of graphs shown in the following Tables 8.4 – 8.7 and Fig. 8.8.  

With 1,800 queries run from a bank of 9,960 available queries, given random distribution, it is 

surmised that 5 tests are sufficient to cover a reasonable proportion, approximately 64% of the 

queries available. 

 

Table 8.4:  Query Parser / Create/Destroy MVs Phase – Summary Metrics 

Test # Queries 

Executed 

Plans 

Cached / 

Parsed 

M V Links 

Created (Qs 

with M Vs) 

M Vs Defined / 

Created 

Indexes 

/ Tables 

Created 

Queries with 

valid M Vs 

1 1801 1464 1462 1186 65.6% 73 53 72.6% 47 6 1186 65.6% 

2 1801 1298 1287 1019 56.5% 74 47 63.5% 10 35 1019 56.5% 

3 1801 1283 1272 1032 57.3% 74 52 70.3% 11 38 1032 57.3% 

4 1801 1261 1251 991 55.0% 74 43 58.1% 10 30 991 55.0% 

5 1801 1250 1240 994 55.2% 73 48 65.8% 12 34 994 55.2% 

 



 

- 15 - 

 

 

Table 8.5:  Analyse MVs/Use Metadata Phase, Summary Metrics I 

Test # Original Query 

M etadata 

Captured 

New Query 

M etadata 

Captured 

Comparable 

Query M etadata 

Captured 

# of New 

Queries with 

Lower Costs 

than Original 

# of 

Original 

Queries with 

Lower Costs 

than New 

1 332 171 171 33 8 

2 301 166 166 32 17 

3 311 153 153 27 23 

4 268 166 166 37 19 

5 288 169 169 42 24 

 

Table 8.6:  Analyse MVs / Use Metadata Phase, Summary Metrics II 

Test # Avg. Cost 

Differential for 

All Original vs. 

New Queries 

Avg. Read 

Count 

Differential 

Between Query 

Pairs 

Total Read 

Count 

Differential for 

All Query Pairs 

Average 

Efficiency 

Differential Per 

Query Pair 

Total Cost 

Differential For 

All Query 

Pairs 

1 0.7622 1261 215653 -4.31269 129.99 

2 2.86199 3937 653536 -5.82934 475.10 

3 2.69643 3888 594922 -2.18379 412.55 

4 2.60160 3641 604448 -7.06265 431.86 

5 5.66083 7809 1319851 -4.67521 956.68 

 

Table 8.7:  All Phases – Storage and Runtime Costs – Summary Metrics 

Test # All Query 

Executions 

(S) 

Query 

Parser 

(S) 

Create/Destroy 

M Vs (S) 

Analyse/use 

M etadata (S) 

Total 

Runtime 

(S) 

Total 

Additional 

DB Objects 

(M B) 

1 27 2 910 27 966 8,211 

2 26 2 354 66 448 5,070 

3 27 2 2400 83 2,512 11,521 

4 27 2 842 42 913 7,795 

5 26 1 629 63 720 13,528 
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Differentials were captured for many key metrics, as detailed in Tables 8.4 through Table 8.7.  Fig. 

8.8 shows the total cost differences between the original query versions and the new query versions, 

expressed as a floating-point number.  Cost differences greater than 0 indicate the new queries 

consumed more system resources (as a blended measure as defined by query cost in SQL Server) 

than the original queries. 

 

 

Fig. 8.8:  Cost deltas for all queries, all runs 

 

However, it is noted that the standard deviation is somewhat high, and that the mean average of 

this data set does not necessarily correspond to the average cost impact of new queries using MVs 

that original queries.  In Table 8.9, the number of original queries that cost more than the new 

queries are counted, likewise the vice versa case, and some basic metrics on the whole data set are 

captured. 

 

Table 8.9:  Metrics for the cost delta measure, all queries, all runs 

Cost delta: Mean average 2.92 

Cost delta: Standard deviation 17.19 

Cost delta: Original queries > new queries 171.00 

Cost delta: New queries > original queries 91.00 

Cost delta: New queries = original queries 563.00 

 

 

This yields the result that there were 171 cases of 825 (20.7%) where the newly generated queries 

outperformed the original queries, versus 91 cases (11.0%) where the opposite held true (and 563 

queries (68.2%) with no difference observed).  In other words, there were more queries that had 

improved performance by the new MV process than queries that were adversely affected.  
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With this in mind, the data is filtered in Fig. 8.10 to observe the cost deltas for all queries where 

the new cost is lower than the original cost, to observe the amplitude overall.  

 

 

Fig. 8.10:  Cost Deltas where New Query Cost < Original Query Cost, all runs 

 

Table 8.11:  Metrics for the cost delta measure where new query cost < original query cost, all runs 

Cost delta: Mean average -1.15 

Cost delta: Standard deviation 2.00 

 
 

The cost savings range from nil to -10.4, with a mean average of -1.15 cost saving and a reliable 

standard deviation of 2.0 indicating stability, as shown in Table 8.11.  However, as cost in SQL 

Server is somewhat relatively defined, this figure needs to be placed in context, particularly in 

reference to the average query cost.  The analysis above was repeated for the other two key 

measures captured, row reads required and efficiency.  Tables 8.12 and 8.13 show the total 

increases (for original query < new query), total savings (for original query > new query), and 

averages for all measures, for cost, rows read and efficiency.  The second table shows figures 

excluding extreme outliers in the 0-5th and 95th-100th percentile, based on cost delta, necessary due 

to the high standard deviation in the data. 
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Table 8.12:  Performance metrics for all processed queries, full range. 

 

 

Table 8.13:  Performance metrics for processed queries,  

filtered between 5th - 95th percentile on cost delta. 
 

 

 

An average cost saving of -0.2 excluding outliers was noted against an average cost of 0.4 (50% cost 

saving) in cases where the original query has higher query costs than the new query.  When 

including the vice versa case and cases where query costs are identical, a modest increase in costs 

(0.46 – 0.4 = 0.06) is observed, a 15% increase overall.  Checking the read count totals and 

averages, a decrease in number of read counts executed is observed, -5,522 in total with an average 

read count saving per query of -41 reads.  Overall, a significant increase in read counts from 

294,893 (original queries) to 404,247 (new queries), was observed: 37.0%.  For cases where new 

queries outperformed original queries, a drop in efficiency was noted, by an average of 9%; for the 

vice versa case, the drop in efficiency by the new query was pronounced at -41.8%, reflecting the 

change in the read counts required.   

It was found that in approximately 15-25% of queries, query costs dropped after implementing the 

new MVs.  This result was borne out across all 5 test groups.  This drop shows applicability of the 

new MV process to some queries in the set. 

 

8.5.3 Storage and write performance trade-offs 

 

During experimentation the total size of new database objects in the database (views and tables, 

the latter masquerading as views) was recorded.  Table 8.14 summarises these findings. 
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Table 8.14:  Storage required by new materialised views 

 

 

It was found the use of MVs to simulate subsets of schemas is viable if and only if the provision of 

additional disk space to support this strategy is provided.  An average of between 155MB and 

294MB was required per MV, with a consistent average of between 40 and 53 new MVs successfully 

created per test (1,800 inbound queries).  This implementation removes MVs that are no longer 

used; it also deduplicates the query and MV definitions, shown during preliminary testing when the 

number of MVs did not significantly increase during multiple executions of the process modules 

given a steady inbound query load. 

 

8.6 Conclusions 

 

This chapter began with the observation that querying large tables for small quantities of data is 

inherently inefficient and a simple efficiency metric was proposed comparing reads required against 

available rows of data, defining this for both straightforward contiguous page reads in a table and 

against a B+ tree index structure, such as used for clustered and non-clustered indexes.  It was 

noted that for all cases except row lookups and single-row index seeks, efficiency remained less than 

100% and the intention was expressed to improve the overall efficiency of queries through the use 

of materialised views to supplement base tables; where such an approach has been identified before 

in the literature, the solution has been extended to create a set of processes that analyse inbound 

queries, create appropriate materialised views to support those queries, and remove materialised 

views that no longer meet the requirements of the inbound query stream.  Two key performance 

metrics were focused upon, the second being a function of the efficiency; query cost, a blended 

measure of CPU, I/O and expected work provided by the query optimiser, and read counts, which 

were extracted directly from the RDBMS plan cache.  

The results showed that against the TPC-C benchmark dataset, using a query data bank of 9,960 

queries in 5 test sets of 1,800 randomly-drawn queries, it was possible to demonstrate some benefits 

of the new process.  These included a modest reduction in the average plan cost by 50% for queries 

which demonstrably ran at lower cost against the original query; however, when including all 

queries, including those where MVs made no demonstrable difference (or indeed worsened the 
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difference), average query cost rose by 15%.  Similarly, a minor read count drop (c. 1%) was 

demonstrable for queries positively affected by the new process, but an overall increase in reads of 

37% when considering queries with original costs above new query costs.  Consequently efficiency, 

as a function of reads, showed significant drops – approximately 9% and 41% respectively.   

It was found that, queries which would not benefit from the MV approach notwithstanding, the 

new process has produced significant evidence of plan cost savings approximating 50% (average 

1.15 drop against a landscape of queries ranging in relative costs from 0.8 – 3.72) in approximately 

15-25% of cases, meaning that 15-25% of queries could benefit from these views by a reduction in 

cost varying up to 50%.  This means the proposed solution, while in its current form does not 

provide evidence of viability to every presented query, may be effective if highly targeted towards 

certain types of query.  The evidence amassed suggests that given improvements in the 

implementation, this solution could achieve the following: 

 

• By including parsing support for parameterised queries, the improvement of the query 

uptake into the new dynamic query process by up to 30% (using the same TPC-C 

implementation), this figure based on the exclusion percentages noted during testing; 

 

• By improving parsing overall, the exclusion of queries which are unsuitable for the new 

process – for example, those involving side-effecting functions – earlier in the process.  

 

• By analysing indexes required by the queries, the creation of effective, targeted materialised 

views indexed for the queries using them, significantly lowering read counts. 

  

Some difficulties were found that are inherent to the RDBMS engine.  Materialised views in 

Microsoft SQL Server do not support OUTER JOINs since the addition, update or deletion from a 

base table in an OUTER JOIN can result in the removal of a row, inconsistent with a schema-

bound database object.  Oracle Database has some workarounds to this issue but also presents 

some weaker limitations.  It is suggested that the implementation could be extended by either 

removing queries with OUTER JOINs from scope or creating multiple views for the components of 

the JOINs and assigning an MV to each component, retaining the OUTER JOIN in the original 

query.  This approach would also be compliant with relational theory, reducing each one-to-many 

relationship to a one-to-one relationship.  As this solution was out of scope, this issue was overcome 

through replacement of the MVs with tables which have the advantage of identical structures to 

MVs in this context but the disadvantage of being static. 

Some RDBMSs may not be suitable candidates for a process reliant on the plan cache.  As of 

MySQL 8.0, the plan cache has been removed from this RDBMS, citing implementation difficulties 
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(Lord, 2017).  Some inventiveness may be required to overcome this consideration – for example by 

fetching plans manually from the query optimiser and storing as a task to be done by the database 

administrator. However, all other major RDBMS platforms retain their plan caches.  More work is 

required to overcome the periodic flush of the plan cache noted during testing and which appears to 

be unique to the Microsoft SQL Server RDBMS; in many other RDBMS systems, the plan cache is 

directly configurable. 

Future work on this project would include addressing the implementation points above; more 

testing for asynchronicity and long-term effects; improvement of the query parser, perhaps 

integrating industry-standard parsing tools such as GNU Bison; extending the implementation of 

the MV definition to include queries with OUTER JOINs and more complex structures such as 

subqueries, CTEs, system functions, TVFs and variables; extending the implementation with an 

indexing strategy to index or re-index MVs periodically in response to query process flow; and 

further theoretical work on the efficiency of the various access components in query execution plans 

versus theoretical maximum efficiency, to strive to achieve the maximum possible efficiency for 

data access in relational systems. 

 

8.7 Chapter Summary 

 

In this chapter, it was demonstrated how the theoretical design for dynamic schema redefinition as 

part of the PETAS framework can be illustrated through a set of algorithms and implemented 

using standard SQL and simple Python routines.  Each component of the dynamic schema 

redefinition process was implemented, and these were tested independently, adjusting the 

implementation in response to the observations made through unit testing, then testing the 

components end-to-end.  Modest improvements were found in query performance under some 

limited conditions; it was evident that further work to improve the range of queries to which the 

new solution could apply is desirable; likewise, the implementation workaround using materialised 

views, rather than direct logical-to-physical mappings (e.g., from new schema to page offset), was 

necessitated by the need to rewrite some large part of the query engine.  It was found the 

restrictions inherent in materialised views, including the restriction on outer join operations, 

contributed to the low query improvement metrics, and a better, more robust implementation, 

particularly of the query parser, may have effected substantial improvements.  This latter finding 

mirrors one of the key conclusions from the query parser and schema selection mechanisms detailed 

in earlier chapters.  

However, the presence of positive improvements as measured through both ordinary metrics and 

the new efficiency definition (function of rows read vs. rows available) is encouraging, and it is 

found that despite open questions about the effectiveness of the implementation, the key ideas 
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remain viable and further work can focus upon improving, refining and further validating the 

solution. 

In the final chapter, the results and conclusions are gathered into a narrative, and the findings are 

compared and contrasted with the stated aims and objectives.  It is sought to conclude whether the 

research has been successful in this regard and whether a novel contribution to knowledge has been 

made.  Chapter 9 concludes with a summary of potential research directions and unresolved 

questions to investigate to support the future of PETAS. 
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Chapter 9:  Conclusions and Future Work 

 

9.1 Introduction 

 

This final chapter reflects on the research completed and summarises all the findings.  The outputs 

are drawn together, starting from the initial literature review, qualitative research and proof-of-

concept problem investigation and leading into the main body of research, the development of 

PETAS, into a set of conclusions which are presented through mixed methods evaluation.  The 

results are examined and validated against the research questions, aims and objectives, seeking to 

understand if, and to what extent, these have been successfully met.  The novel contribution to 

knowledge is revisited, and next steps considered to develop and integrate this research into 

existing database platforms.  A final summary and detail on the contents of the Appendices to this 

document is provided.  

 

9.2 Problem Investigation  

 

9.2.1 Qualitative research 
 

Following the literature review, the design, piloting and deployment of a questionnaire was 

undertaken and aimed at data practitioners, with the objective to discover, through a mixture of 

structured, multi-choice questions and open questions, the current views of practitioners on 

database performance challenges and their potential causes.  This survey was piloted with a small 

group of individuals including database experts, then the questions and structure were amended in 

response to their feedback and the survey was delivered to a wider audience.    

Given the initial findings from the literature review weighed against the popularity and ongoing 

suitability of relational databases, particularly as solutions for object-oriented data and increased 

volumes of data, particular difficulty was found in structuring questions in an objective, unbiased 

format.  Likert scales were employed as a tool to help reduce bias, adjusted questions in response to 

pilot feedback and internal consistency between questions was sought.  A simple filter was also 

employed at the start of the questionnaire to pre-qualify respondents and details of their experience 

collected to further validate the data. 

Using thematic analysis, four key themes were extracted; negative ORM behaviour, ORM use 

(prevalence thereof); education, awareness and perception; and future outlook.  From here, it was  

established than many respondents had a poor view of ORMs but an equal number were not 

generally familiar with their use.  There were few positive opinions for their role in query 
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performance tuning.  It was found the respondents placed the majority of the blame for poor query 

performance within their organisations on a lack of education or awareness of relational database 

systems in others.    

Due to the relatively low number of respondents, few definite quantitative conclusions can be 

drawn from the survey outcomes since the potential variance in replies is too high to infer any 

reliable statistical output.  The high proportion of respondents not able to respond in depth on 

ORMs was reflective of a lack of experience with ORMs in general within the respondent 

population; in retrospect, not surprising since ORM frameworks sit within application development 

frameworks (e.g. Entity Framework within .NET; Hibernate within Java; Django ORM within 

Django) and as such, database administrators, developers and architects are unlikely to come into 

regular contact with them.  On reflection, a more suitable target audience (or a combined audience) 

should have included application developers. 

The questionnaire findings were supplemented with a small range of interviews with invited 

database practitioners.  These were conducted as semi-structured interviews; with a range of 

‘starter’ questions and points on which to follow up, aligned to each theme of the questionnaire 

findings, thus triangulating outcomes, and each interview took place over the course of an hour 

with the pace dictated by the participant; the flow of conversation was directed, but in general 

sought to elicit the detailed experience and opinions of each candidate in a contextual, meaningful 

way.  The interview participants were found to be open and participative in the conversation with 

very little direction required by the interviewer; all participants were well-experienced and came 

from different sectors including consumer website provision and the aeronautics industry.   

The findings were analysed using the NVivo software package which allowed codification, 

annotation and grouping of the transcript contents, reminiscent of grounded theory and the 

approach to the literature review.  A frequency breakdown was produced of various survey topics 

and, although initially the intention was to perform a semantic analysis, it was found that the 

results of this were inconclusive due to the dialogue being mostly technical in nature and not 

expressing many marker keywords.  Instead, a narrative analysis was used, described in detail in 

Chapter 4.   

It was found that the interviewers generally held opinions compatible with the findings from the 

literature and the survey.  Some were heavily critical of the speed and flexibility of relational 

platforms – one particularly striking quote:  
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“[Participant]  I think NoSQL DBs will be the future thing. Databases with designs 50-60 

years ago, yeah, the initial concepts. So for stuff that was applicable at the time it, it was 

good, but with the modern web applications and user interfaces, and just the volume and in 

different types of data we can collect. Trying to put it all into a SQL DB doesn't make 

sense when you can have something something like BigQuery or MongoDB, that you can 

store different types of stuff in there and install get good performance and usage.” 

 

The general apathy and, in places, hostility towards the usefulness of relational database systems 

was apparent throughout all three strands of the qualitative research.  Interview participants also 

attacked the lack of awareness in their peers in writing SQL queries (reflecting the awareness issues 

found in the questionnaire); the potential scalability of the systems to store data at volume; and 

the speed that relational database systems responded to real-time queries.  There was little output 

from the interviews on ORMs.   

In general, this qualitative research serves to reinforce the case that relational database systems are 

in a difficult position; able, theoretically, to support querying at scale, they are nonetheless 

struggling with the query antipatterns presented to them by ORM platforms.  Relational database 

systems are perceived as slow and inflexible; a wide range of interventions have already been 

discovered and implemented in the last fifty years, and active research has slowed and has moved 

to nonstructured and alternative data representation forms.    

 

9.2.2 Quantitative research  

 

Following the qualitative research, it was sought to reproduce some of the findings of others and 

validate the opinions of the survey participants.  In Chapter 4, section 4.5, the quantitative 

experiments are described.  Two studies were undertaken; first, to see if the reported object-

relational impedance mismatch query performance impacts from Ireland et al. [3] and others were 

reproducible in a modern relational database platform, and second, to compare and contrast auto-

generated queries from an ORM layer against queries written manually, and to compare 

performance results.  This latter case is set against a real-life data set, Pacific Ocean buoy sensor 

readings. 

The first study found that for trivial queries, there was none, or little, difference between execution 

plans and consequently between performance outcomes.  The ORM framework was able to deal 

with simple cases, to prepare queries appropriately, to parameterise and transpose parameters into 

stored procedure query calls and single SQL queries.  However, as queries became more complex, 

especially for selections/projections with multiple selected columns and more than one join, the 
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elapsed time was much higher than manually-written queries (290ms vs. 118ms, for example, as 

shown in Chapter 4 with all other confounding variables controlled for).   

It was found that ORM platforms tended to have mitigations for some of these performance defects 

which are not always used effectively; for example, the use of lazy loading over eager fetching can 

reduce the number of rows transmitted to the client; the forcing of JOINs over nested queries can 

simplify execution plans; and the proper parameterisation of literals can reduce recompilations 

through better matching in the query cache.   

The new query representation solution was developed as a direct response to the latter weakness, 

considering queries as computable and relatively comparable objects rather than as strings to be 

parsed and bound.  

In the second study, it was sought to replicate the emergence of anti-patterns claimed in the 

literature by generating queries against a real-life data set.  The data set chosen is a set used before 

in the literature for data mining purposes and comprises more than 2m data points set over a single 

table with 178k rows.  To eliminate the possibility that anti-patterns are confined to a particular 

database product, the Python and the Django framework with Django ORM was used against 

PostgreSQL for the investigation, versus the previous use of Microsoft SQL Server.  It was sought 

to expand the range of measures from simple execution time to a range of standard metrics as 

described in Chapter 4.  As the presented data was somewhat simple in schema structure, this was 

restructured as a Kimball-type data warehouse schema [4] using fact and dimension tables to have 

a consistent and industry-recognised data structure upon which to base the testing.  

It was found, with one outlier result, that there was a positive correlation between the complexity 

of the presented database query and the time taken to execute the query.  Corresponding metrics 

such as memory use and plan cache size also increased in line with the execution plan.  To 

statistically validate the results, t-testing was conducted on the observations of the mean execution 

time across the range of tests, but the resultant p-values indicated an 18% chance that these results 

were due to chance alone, due in part to a low population of query tests which were analysed 

manually.  However, direct comparison of figures yielded some observational evidence between sets 

of figures that performance differed, if unreliably so, between ORM and non-ORM-generated 

queries. 

 

9.3 Query Representation  

 

Following the problem validation and investigation phases, which encompassed both secondary 

research through a detailed literature review and primary research through the administration of 

survey instruments and the investigation of quantitative outputs using a positivist experimental 
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approach, the solution, PETAS, was then designed to introduce several features to address 

opportunities to improve relational database query performance in response to the findings that 

such performance is suffering under the burden of increased data flows, apathy from the 

development community for relational solutions and the practical effects of object-relational 

impedance mismatch.  

PETAS consists of three key areas; the query representation alternative, incorporating a query 

parser and adjacency cube generator, rendering queries from SQL into multidimensional arrays; the 

schema selection mechanism, which compares the adjacency cubes of an incoming query, the cubes 

of all queries in the cache and computes similarity scores before selecting an appropriate schema 

variant for the incoming query by using K-nearest neighbour selection on the cached cubes to 

predict the most appropriate choice.  The third area is the dynamic schema redefinition procedure, 

which runs asynchronously and is responsible for generating, destroying and assessing the usefulness 

of variant schemas.  These schema variants are used by the second component.   

First, the query representation mechanism was built, which converts inbound SQL queries to 

multidimensional arrays, each array consisting of three dimensions and the intersection of each X-

Y-Z co-ordinate marked with a binary value to indicate association between each dimension.  

Columns in the X and Y axes indicate bindable objects in the query and columns in the Z-

dimension indicate subtype of relational expression, with 4 possible choices: selection, intersection, 

predication and membership each correlating to their set-theoretic alternative.   

The construction of the theoretical model was relatively straightforward, since the language for 

proving that SQL queries are representable relationally and vice versa has been long established by 

Codd [5] and others.  It was shown in the theoretical design that queries constructed as directed 

graphs, which are representable as adjacency matrices, have the characteristic of embodying 

relationships that the current query parsing methods do not.  These relationships, when coupled 

with the objects in the query, have the effect of producing a mathematical structure which can be 

compared with other mathematical structures of the same type using measures such as Hamming or 

Manhattan distance.  From this theoretical work, a series of equations, or transformative steps, 

were presented and expanded into a set of algorithms that demonstrated the process.  

From the implementation perspective, a working implementation was created from the theoretical 

design using Python, ingesting SQL queries and outputting multidimensional lists.  The 

experimental solution was validated by generating queries against another real-life data set used 

later in the research component concerning crime data in the US city of Chicago; a random query 

generator was written and used in Microsoft SQL Server against this data set to produce 1,000 

queries, which were validated manually and it was found that 947 were valid and suitable for test 

purposes.  The functional testing of these 947 queries showed 100% executed normally.  A test 

harness was then constructed and the duration recorded for how long the query representation 
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algorithm took to process each query into the equivalent multidimensional array; these results were 

presented in Chapter 6 where it was found the mean average duration to be 1.8ms +/- 1.5ms 

standard deviation.  This overhead is found to be minimal in the context of query execution which 

can take many seconds to resolve a given query and consequently this solution is believed to be 

viable.  

In Chapter 7 the testing of the query representation mechanism was extended by coupling it with 

the similarity scoring mechanism and schema selection process, which are both reliant on the 

existence of the query representation process and running end-to-end tests.  More on these 

outcomes is presented below. 

 

 

9.4 Similarity Scoring and Schema Selection  

 

The similarity scoring mechanism extends from the provision of the process to transform a database 

query from SQL into a multidimensional adjacency cube.  From here, it is proposed to insert the 

process into the wider database query execution process, where upon receipt of a SQL query, this 

new process completes the transformation then compares, using the custom algorithm, the resulting 

cube with each previously-generated cube in a new query cache.  This, combined with a weighting 

system, generates a range of reals, from 0 to 1, which are then placed along the number line in 

numerical order and the nearest K neighbours to the query at hand are selected (1) where K is an 

independent variable that can be continually adjusted according to the accuracy of the schema 

selection mechanism in a separate, asynchronous process.    

Once K number of related queries have been isolated, a simple majority vote is used, reading the 

sub-schema assignment of each previous query and assigning the majority winner to the new query.  

An attempted execution of this query is tried against the selected sub-schema, supplying a query 

mapping sub-process to deal with syntactic difficulties, and the outcomes are measured as 

performance metrics.  The query is then re-executed against the base schema asynchronously to 

establish baseline performance.  These performance metrics are used to determine the degree of 

usefulness of the neighbouring K queries; if the performance is better using the base schema, a 

weighting system is used to reduce the weight of the queries; if the performance is better using the 

sub-schema, the weights of the neighbouring queries are increased.  Due to the potential overhead 

sampling some percentage of queries is advocated for side-by-side performance comparison rather 

than running this process for each, and every, inbound query.  

This process was implemented using a mixture of Python and SQL against PostgreSQL and 

Microsoft SQL Server, using a dataset detailing crime data in Chicago from which 4 sub-schemas of 

the base schema were constructed, constituting two partitions and two vertical shards.   
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The initial results were very promising.  By connecting the query representation algorithm to the 

similarity scoring and schema mapping algorithm and running this against the Chicago data, it was 

found that for 5 sample queries, the expected vs. actual similarity scores differed by only 6.2%; in 

other words, the new algorithm classified these inbound queries nearly identically to human manual 

selection.  The next stage was to test at scale.  

The process was tested at scale in 10 test sets of 1,000 queries per test set, generated using the 

same methodology as used to test the query representation process and detailed in the previous 

section.  Of these, it was found an estimated mean average failure ratio of 47:1000, leaving on 

average 953 valid queries per test run.  Syntactic reliability was tested next; were the queries sound 

in the sense of having meaning within the schema, and returning rows?  Here, difficulties were 

encountered; a failure ratio of 837:1000 was observed as some columns selected in mapped queries 

did not exist in the shard the process selected, and heavy system resource use was found (CPU, 

memory saturation) forcing the upgrade of the test system before proceeding.  Several other issues 

were found which, together with the mapping error, were fixable by following an iterative fix, test, 

integrate strategy.  After implementing the fixes, a failure rate of nil was achieved. 

Next, two training sets of 1,000 queries each were generated, of which 954 and 955 queries were 

suitable for testing, respectively.  A wide-ranging set of tests were defined, summarised in Chapter 

7, running over 9,500 executions of the algorithm.  Significant processing overhead was found to 

have contributed to system resource issues, also adding an average of 54ms to each query execution.  

However, discounting the processing overhead, a mean reduction in query execution time of 6.2% 

was achieved for all queries and for those queries run exclusively against sub-schemas, a reduction 

in execution time of 20.6%, a significant result.  

Testing the K-adjustment process, it was found this was working as expected with the queries in 

the cache observed to have frequently-changing weights, the least-useful queries scoring 

progressively lower in the K-nearest neighbour and eventually aging out of the cache.  It was 

discovered that weight adjustment process meant that the schema classifier was becoming 

progressively more accurate with a modest positive correlation across several thousand query 

samples.  It was then possible to calculate the correlation formula use it to predict how quickly the 

system could be brought to a specified degree of accuracy in terms of the number of queries 

required to be presented.  

The testing was not entirely positive.  The query generator was limited in scope by the range of 

SQL queries that the new parsing mechanism can process; complex SQL, such as that containing 

CTEs, nested queries and side-effecting operators were out of scope, however JOINs are supported.  

A modest success of 20% query improvement was demonstrated, but some work is required on the 

implementation of the new mechanism since it was difficult to ascertain why more queries did not 

fall into scope of, and benefit from, the schema classifier.  The new weighting mechanism is also 
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simple and could potentially be improved for more granularity, and the overall performance 

overhead of the algorithm requires that this implementation be refactored for better execution 

efficiency.  Finally, it is noted that the implementation was put in place alongside an RDBMS, 

rather than within it; issues with proprietary formats and engine complexity mean the proper 

integration of this solution was not feasible for experimental purposes; in future work, it would be 

preferred that the code is refactored, significant efficiency improvements are made, the range of 

SQL in scope of processing is expanded (towards the full ANSI-SQL standard, if possible) and the 

system is fully integrated into the query engine to establish the full potential of this solution. 

 

9.5 Dynamic Schema Redefinition  

 

For the similarity scoring and schema selection process to function effectively, there must be a 

choice of schemas available.  Typically, in a relational database platform, a single schema – a 

collection of tables – is presented, since they are physical representations of groups of data arranged 

in a sequential form.  The sequential form may be contiguous storage, or it may be in a B*-tree 

arrangement, or some variant; but the table has permanence, and features such as two-stage 

locking, and the provision of different transaction isolation levels manage parallel access requests.  

Techniques such as partitioning and indexing coupled with broader strategies such as archival and 

infrastructural considerations help ensure access requests to these singular objects remain 

performant.  

The proposed solution relies on the existence of multiple sub-schemas from the base schema; that is 

to say, derivations of the base schema, presented as separate logical objects.  Using this description, 

this appears to be redefining the view, but the difference is that whereas views are logical 

representations of SQL queries which, when called upon, silently map the executing query to the 

base schema and return the results, the proposed solution is more akin to materialised views, which 

rely on the sub-schema definitions being separate database objects in their own right, with an 

independent existence, schema-bound to changes in the base schema.  Yet, ideally, the solution 

would not mirror materialised views; it is proposed to use wholly logical definitions which, when 

called, do not map to the base schema but access the pages on which the data resides directly.  

This difference is subtle but important, since the execution plan used would reflect the sub-schema 

arrangement and therefore may perform better than the view, whose execution plan reflects the 

calls upon the underlying base schema objects.  These sub-schemas may be supported with non-

clustered indexes and other structures, but the data remains represented once and once only, and 

the base schema remains uninvolved. 
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The experimentation and testing undertaken fell short of this goal due to the lack of support for 

direct page lookups and accesses in any of the RDBMS platforms.  Although these functions are 

integral parts of the database engine, they are not directly callable and therefore inaccessible unless 

the database engine source code, proprietary in many RDBMSs, can be accessed and amended.  

This remains a possibility for some open-source tooling such as PostgreSQL and MySQL.  However, 

the closest analog was chosen to represent the direct access idea, the materialised view.  

These algorithms were presented in Chapter 5 for the dynamic schema redefinition process, which 

consists of several components, shown in detail in Chapter 8.  The query parser is responsible for 

accepting as input a database query in SQL form, and tokenising this query, identifying the 

attributes, predicates and relations within it.  There is some overlap here with the query parser 

written for the query representation process since both components must shred a query to its 

component parts.  Next, the information is written to temporary storage, and two processes come 

into play; the create and destroy MVs (materialised views, used in place of sub-schemas) phase 

assesses the contents of the temporary tables and based on execution count and other factors, 

creates appropriate sub-schemas that fit the queries.  These are created in the target database.  

The plan is written to a a new cache, and using similar logic to the feedback loop in the similarity 

scoring and schema mapping process, it is assessed whether the query would run faster against the 

sub-schema or the base schema.  Performance data is collected on both cases and this is written to 

the cache.  On re-presentation of the query to the engine, the query is checked for its presence in 

the cache and the preferred schema is noted.  This preferred schema is used to run the query.   

Interfacing with the previously-defined components, these schemas are under constant review by 

this process and destroyed when no longer used.  The list of schemas available and the cache 

indicating chosen schema per query are combined with the cache from the similarity scorer and 

schema mapper.  As the latter runs, weights for the various queries are adjusted.  As the dynamic 

schema process runs, schemas, with an entirely abstract existence, are created and destroyed.   

Throughout the testing, mixed results were found.  It was found that the implementation of a 

working schema derivation algorithm was technically challenging; database queries, although using 

a finite syntax, have an extensive range of different forms and identification of sub-schemas was 

particularly error-prone.  The TPC-C benchmark data set was used and against this schema, 9,660 

distinct queries were generated.  1,462 queries were ran and cached before cache flush (a limit 

arrived at through trial-and-error) and of these, it was found 99.9% were suitable for mapping to 

new sub-schemas (MVs substituting here).  From the queries, the process was able to group 

selections, predicates and relations and simplify and aggregate queries to create 53 new sub-schemas 

from which the testing was able to be based.  

However, several practical issues arose.  The MVs created only become MVs once indexes are 

created upon them; in Microsoft SQL Server, the test platform, a high failure rate was encountered 
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when implementing the MVs: only 6 of the 53 had indexes created successfully, with various 

limitations such as the use of non-key columns in OUTER JOINs prohibiting their use.  This issue 

was overcome by creating fixed tables in lieu of MVs for these cases. 

For the subset of queries suitable for the test harness, it was found that 19.3% of queries decreased 

in actual execution costs using this new technique.  The implementation, like the implementation of 

the similarity calculator and schema selector, lacked full ANSI-SQL support which restricted the 

range of queries suitable for this approach to approximately one-tenth of all queries generated.  It 

was also found that 4.7% of queries increased in query execution cost. 

However, despite the limited range of queries, the indicative results were that this approach has 

some potential.  The process to create and destroy new sub-schemas was demonstrated working 

(MVs and tables standing in) in real-time, a process not currently present in any RDBMS.  Ise of 

the new cache for schema mapping was demonstrated; the asychronicity of the process was also 

demonstrated, allowing this to run alongside the ordinary cost-based query optimiser without 

interference in the core operations of the query engine; and the process of objectively assessing a 

given query for performance against multiple schemas was shown to be working.  With refinement, 

it appears this process is viable for inclusion in RDBMS systems.  With the same style of cache 

used in dynamic schema redefinition as the schema selector using the K-nearest neighbour process, 

it was also shown how the weight-based query classifier can work hand-in-hand with the schema 

redefinition process in schema mapping, although it is acknowledged that the testing did not 

include systemic end-to-end testing since the components were individually tested on different 

RDBMSs and using different test data sets.  

The new efficiency measure was useful in assessing the access costs of queries for this component, 

and there is potential to develop this query measure as a universal measure, as query cost is 

currently heterogenous and ill-defined across all RDBMS platforms.    

More detail on the test outcomes was presented in Chapter 8. 
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9.7 Assessing the Research Questions, Aims and Objectives 

 

The research questions, aims and objectives presented in Chapter 1, section 1.4 are now revisited to 

establish to what extent the stated goals have been met. 

The original goals are presented in italics and commentary is presented underneath each item. 

 

9.7.1 Research questions 

a. As the demands of data processing have evolved from closed systems with known data 

structures driven by fixed schemas to open, unstructured systems driven by the 

applications, what disadvantages can be identified with the current object-relational 

database model given this evolution, and how can these be overcome? 

 

Through the literature review and qualitative research, a range of disadvantages were 

established with object-relational relationships, particularly the existence and taxonomy of 

object-relational impedance mismatch.  This topic has wide coverage in the literature and 

both academic and industrial practitioners have commented extensively on the pitfalls in 

database performance that are manifest from this phenomenon.  The literature review 

brought together the seminal sources and supplemented this with survey instruments, 

where a level of apathy and, to an extent, hostility was established to exist towards 

relational database platforms, partly as a result of the perceived difficulty of working with 

object-oriented sources.  These negative artefacts were demonstrated, termed anti-patterns, 

through original primary research on two different RDBMSs, details of which were 

published in two separate conference proceedings. 

 

Some existing mitigating tactics were established for overcoming these performance 

degradations, including the production of a list of recommendations for tuning ORM 

products; however, the original contribution in the form of PETAS is designed to, amongst 

other goals, reduce recompilations by normalising queries into adjacency matrices instead of 

using text-based parsers; encourage query re-use; and to present a method of using query 

subsets to improve performance against the backdrop of ORM-generated queries. 

 

b. Can a new theory for query representation be developed as an alternative to representing 

queries as semantic objects?  Is there an accompanying viable practical approach to 

implementing this new theory to overcome the disadvantages of storing and caching queries 

as non-comparable semantic objects and can this be used to improve the parsing and pre-

optimisation stages of the query optimiser? 
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The contribution of a new theory combined with the algorithms and sample 

implementation is one key component of the novel contribution to knowledge that this 

research produces.  An entirely new technique was developed for query mapping, not 

previously represented in the literature, as a response to the research gap identified on the 

subject of improving query parsing efficiency.  It was noted that current and historical 

parsers all, without exception, use text-based parsing methods, parse trees and object 

binding, neglecting the computational nature of SQL queries being extrusions of the 

relational algebra; an alternative approach was invented and demonstrated that added, on 

average, less than 2ms overhead to the query parser and resulted in a method of comparing 

queries that is superior for relative comparability than the current methods. 

 

It was shown through experimentation that the outputs from the implemented process 

closely mirrored the similarity scores expected from a human expert; however it is 

acknowledged that there exist limitations in the range of ANSI-SQL that the parser is 

capable of handling, a limitation encountered for most of the qualitative research outputs.  

Expanding this range and refactoring the parser is a goal for future research and 

development of these ideas.  

 

c. Can other approaches from alternative computational disciplines, such as machine learning, 

be applied to extend the current object-relational database storage and management 

methodologies, creating a responsive model that learns from system inputs to optimise 

system outputs? 

 

A new weighting system was created that was updateable in response to the relative 

execution times observed from running queries against a base schema and a sub-schema.  

This weighting mechanism was described in both theoretical and practical terms, providing 

the theory, the algorithms and the code listings, and experiments were designed and 

executed to validate whether the weights were updated as expected.  It was found that the 

weighting mechanism worked as designed, with queries aging out for disuse as a result of 

plummeting weights correctly removed from the cache and queries with high comparative 

applicability to inbound queries having weights incremented as planned.  This technique 

was K-nearest-neighbour with an updateable K-value, the process for which was also 

provided and tested successfully.  
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d. Can schema representation and usage in RDBMS systems be adjusted to incorporate more 

of the theoretical capabilities of axiomatic set theory, particularly the Zermelo-Fraenkel 

axiom of the schema of separation?  Does such an approach work theoretically for query 

binding, and can such an approach be implemented in practice? 

 

The ZFC axiom schema of separation formalises the idea that separate subsets can form as 

derivations of base sets (or super/power-sets) and that these subsets are sets distinct from 

the parent set.  Through the dynamic schema redefinition research component, separate 

subsets were defined distinct from the base sets; however, the implementation of the same 

suffered since the precise design that was aimed to implement – the logical representation 

of subsets accessing pages directly from disk, bypassing the base schema – was not feasible 

in current RDBMS systems since the source code for the query engine required extensive 

amendments.  Therefore, only limited validation of this idea was performed, although the 

results were encouraging. 

 

9.7.2. Research aims  

 

a. To research the effects of object-relational impedance mismatch and associated factors, 

such as the impacts of big data that affect relational database query optimisation 

performance; to engage with the industry practitioner community to research the real-life 

performance consequences of queries generated from non-traditional sources, including 

ORM frameworks, upon relational databases. 

 

Through the literature review and qualitative research, the details of various anti-patterns 

emerging from ORMs were established and, using the survey outputs, commentary was 

offered upon the influence of the ‘Vs’ of big data upon the perceived performance of 

relational database platforms.  The primary research outputs presented in Chapter 4 were 

used to demonstrate the ORM anti-patterns.  In terms of qualitative research, this aim was 

not achieved in full.  The selection of database practitioners was deficient in that the 

community of respondents did not include application developers who are most likely to use 

ORM products on a regular basis; fully half of the respondents did not have any 

meaningful insight or commentary to make upon ORM technology, and the interview 

participants were equally reticent on the subject.  However, valuable opinions from the 

participants on performance issues encountered within database systems were extracted, 

and it was noted that non-traditional sources included data at volume (the first ‘V’ of big 

data) which, according to some respondents, their existing RDBMS platforms struggled to 
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cope with. 

 

c. To identify and develop a novel solution to any adverse performance issues arising from 

these consequences; to test and validate the solution, and to establish an overarching design 

framework based upon this solution, detailed at both the theoretical and implementational 

level, to form the foundation of future work in developing the theoretical bases of this 

solution further.  

 

PETAS has been designed and developed; a multi-component model in response to 

performance difficulties arising from ORMs and big data challenges, which is detailed in 

this research.  The overall success was mixed; most elements of the solution were 

demonstrated working, but further research is required for full implementation and 

integration into current RDBMSs.  The tests conducted were extensive, employing 

primarily quantitative testing and the scientific, positivistic method; however, the 

qualitative research outputs were also valuable in validating and refining the problem 

definition and shaping the solution.  Solution validation was only moderately successful; 

while there is confidence that the quantitative validation for each component and for some 

integrations (e.g., the query representation component, the similarity scoring component 

and the schema mapper component) were successful, end-to-end system testing was not 

fully completed due to a disparity in the platforms and the data sets used for the individual 

component testing.   

 

Due to the difficulties of integrating this within an RDBMS engine, the original planned 

workshop/focus group approach for qualitative validation with database practitioners was 

not feasible; this was exacerbated by difficulties identifying a target set of participants for 

the same, given that object-relational impedance mismatch is a niche area of research.  

However, this research has been able to present a unified solution design under the PETAS 

umbrella and detail how the components integrate with quantitative experimental outputs 

bolstering the validation of the design. 

 

9.7.3 Research objectives  

 

a. To provide a summary review of the key technical underpinnings for the topics of this 

research, and to conduct a topical critical literature review of performance optimisation 

literature, both academic and professional, in the relational field together with related 

topics. 
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This objective has been met by providing the review detailed in Chapters 2 and 3, forming 

a summary-based background and introductory review of the literature followed by a deep-

dive topical and technical literature review in the second chapter. 

 

b. That the literature review in (a) encompasses the evolution of data in information systems; 

how data has been stored, categorised and measured, with emphasis on the trends and 

future developments required from data management frameworks to support these 

expectations. 

 

The literature review encompasses a historical overview of relational database systems and 

the contemporary view, noting new challenges.  Topical sections were presented including 

the role of big data and changing landscapes on database concerns, and extensive research 

was carried out on the role of ORMs in database query performance. 

 

c. To investigate and identify weaknesses in current database design and query handling 

approaches, with particular emphasis on query representation and schema design. 

 

Through development of the query representation solution, a core weakness was identified; 

that queries are parsed as if they are textual objects, in the same way that natural 

language is parsed, without consideration that queries are extrusions of relational algebra 

using a finite syntax and as such are computable, comparable and could be represented in a 

form more suited to similarity analysis.  This subject was explored in Chapters 5 and 6, 

culminating in a design centring on graph-theory inspired multidimensional adjacency 

matrices, for which the term ‘cubes’ was coined, and it was demonstrated how these query 

representations are comparable, whereas SQL query text is not. 

 

d. To validate any gaps identified in database performance optimisation research by collecting 

and analysing qualitative subjective data from industrial practitioners and from academic 

professionals. 

 

Two survey instruments were carried out; a questionnaire, targeted at database 

practitioners, which was formally structured using Likert scaling and free-form answers.  

From these results, the findings were arranged into themes and questions, and from this a 

second survey instrument was developed, the semi-structured interview, from which the 

questions derived from the questionnaire findings, triangulating the investigation.  The 

interviews successfully uncovered opinions and experiences around working with data at 
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scale and responses were codified and classified using a grounded-theory-like approach, 

reaching a set of narrative conclusions detailed in Chapter 4. 

 

e. To identify suitable approaches to developing a conceptual solution to address the identified 

weaknesses, generalising this solution into a theoretical framework to augment current 

database storage designs, access methods, management processes and structural 

conventions, suitable for implementation across platforms. 

 

The PETAS framework is presented as a solution to identify the weaknesses in query 

representation, the weaknesses evidenced by ORMs in excessive recompilations and poor 

parsing and the weaknesses in relational systems in dealing with the variety of queries 

presented.  This solution is presented theoretically in Chapter 5, and algorithmically and 

through experimental implementation in Chapters 6-9. 

 

f. To investigate if alternative computational optimisation tools and approaches, such as 

machine learning algorithms, can be used within a solution to the identified performance 

optimisation problems; if so, to present such a solution design and implementation. 

 

The proposed solution does not rely on machine learning techniques, and beyond the 

consideration of a machine-learning classifier, this research is not centrally concerned with 

the machinations of ML as a technique for augmenting database query performance.  The 

discipline of ML was used as a toolbox of potential techniques, from which K-nearest 

neighbour was selected; to this extent, the objective has been met, but an extensive review 

of all possible techniques in the computer science domain was not undertaken to help 

achieve the goals; rather, following the pragmatic research philosophy discussed in Chapter 

1, a ‘what-works’ approach was used and the solution was developed iteratively – a 

bottom-up, rather than top-down, spiral software development lifecycle. 

 

g. To evaluate the contributions of this research and propose new directions for further work 

based on the outcomes that were achieved. 

 

The conclusions are presented both on a chapter-by-chapter basis for each element of the 

primary and secondary research, and as a set of narrative conclusions in this chapter.  In 

section 9.9 of this chapter, future research directions are discussed. 
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9.8 Future Research Directions 

 

This research met many of the research questions, aims and objectives, however there exist various 

opportunities to correct, enhance and validate the proposed solution further.  

First, further work is proposed to understand the extent of the ORM problem from the application 

development perspective.  The omission of application developers as a potential target audience for 

the survey questions was an oversight which led to inferior data outcomes from the qualitative 

research in terms of ORM efficiencies; while the survey instruments had value, the literature review 

and other primary research were relied upon to qualify the ORM performance issues in more precise 

terms.  

Secondly, further development of the query representation method and algorithmic implementation 

is recommended.  The former should be developed further and proven against the relational algebra 

or the relational calculus; the latter should encompass the whole of the ANSI-SQL standard, in 

order to be viable and of practical use when integrating to mainstream RDBMS products.  There 

are plenty of opportunities to develop the academic ideas underpinning this innovation, but also to, 

for example, develop and deploy this solution as an augmentation to an open-source RDBMS like 

PostgreSQL or MySQL as a product fork.   

Thirdly, it is proposed to refactoring all the implementation code for the PETAS components for 

better intrinsic performance.  The choice of Python was, it is believed, a contributor to substandard 

application performance, since lower-level languages have better memory and thread efficiency; 

both measures were observed consuming system resources in testing; it is also quite clear that these 

implementations could be implemented in more efficient code.  Future work would include 

recreating these implementations with a wider range of tests to strengthen the validity of the 

findings. 

Finally, in the broader sense, the research findings uncovered an appetite within the technical and 

business community for data storage and exploration tools capable of dealing with the demands of 

big data.  Today’s databases must be accommodating of unstructured or hybrid data types, be 

capable of withstanding high volumes of varying data presented at high velocity; must be 

performant, easy-to-use, understandable and accessible to a wide audience.  On several of these 

points, current RDBMSs fail.  Future work in the integration of those features inherent in non-

relational databases to the relational database model, in the manner presented by original object-

relational database proponents, may help to alleviate the apathy towards the relational database 

model that has driven many developers to using non-relational systems. 
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9.9 Chapter Summary 

 

This chapter brought together the conclusions from the problem investigation, solution design and 

and testing and validation.  The components of PETAS were described in brief and the findings 

were discussed, with comments upon their validity and aptitude in meeting the stated goals.  The 

research questions, aims and objectives were revisited and, for each item, commentary was offered 

on whether the item was met.  The novel contributions to knowledge were considered and 

enumerated as outputs from the research.  Future research directions were discussed and next steps 

outlined in improving the PETAS framework, drawing upon the lessons learned throughout this 

research project.  

References follow.  In the Appendices, the supplementary material is presented.   
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Appendix A – Practitioner Survey Structure  
 

Questions and responses to the survey (n=19) follow below. 

 

Further information can be found in the Qualtrics link here: 

http://staffordshire.eu.qualtrics.com/jfe/form/SV_51kxz9na13U8hBX  

 

DB Attitudes Survey 

 

Q1 - How would you describe your primary job role?  

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

How would you 

describe your 

primary job 

role? - Selected 

Choice 

1.00 7.00 2.13 1.93 3.73 16 

 

 

 

# Answer % Count 

1 Database Administrator or Database Developer 68.75% 11 

2 Systems or Database Architect 6.25% 1 

http://staffordshire.eu.qualtrics.com/jfe/form/SV_51kxz9na13U8hBX
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3 Systems or Infrastructure Administrator 0.00% 0 

4 Business Intelligence / MI Professional 12.50% 2 

5 Analyst 0.00% 0 

6 Academic (Researcher, Lecturer etc.) 6.25% 1 

7 Web / Applications Developer 6.25% 1 

8 Other (please specify) 0.00% 0 

 Total 100% 16 

 

 

 

Q2 - How many years of experience do you have in your 

primary job role or function?  

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

How many years 

of experience do 

you have in your 

primary job role 

or function? 

2.00 6.00 4.75 1.39 1.94 16 

 

 

 

# Answer % Count 

1 Up to 1 year 0.00% 0 

2 Between 1 and 3 years 12.50% 2 
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3 Between 3 and 5 years 6.25% 1 

4 Between 5 and 7 years 18.75% 3 

5 Between 7 and 10 years 18.75% 3 

6 More than 10 years 43.75% 7 

 Total 100% 16 

 

 

Q25 - In your role, do you use object-relational mapping 

(ORM ) frameworks, or work with databases that process 

queries generated from ORM s? Examples of ORM s include:  

Entity Framework, H ibernate / nH ibernate; Dapper, 

ActiveJPA, Enterprise JavaBeans, LINQ to SQL, 

DataObjects.NET and TopLink.  

 

 

# Field Min Max Mean 
Std 

Dev  
Variance Count 

1 

In your role, do you use object-

relational mapping (ORM) 

frameworks, or work with 

databases that process queries 

generated from ORMs? Examples 

of ORMs include:  Entity 

Framework, Hibernate / 

nHibernate; Dapper, ActiveJPA, 

Enterprise JavaBeans, LINQ to 

SQL, DataObjects.NET and 

TopLink. 

1.00 2.00 1.57 0.49 0.24 14 
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# Answer % Count 

1 Yes 42.86% 6 

2 No 57.14% 8 

 Total 100% 14 

 

Q5 - Please indicate how much you would agree, or disagree, 

with the following statements: 

 

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

I am proficient at 

writing queries in 

SQL 

6.00 7.00 6.93 0.25 0.06 15 
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2 

I am proficient in 

database 

administration 

4.00 7.00 6.40 0.80 0.64 15 

3 

I am good at tuning 

SQL queries for 

better performance 

2.00 7.00 6.07 1.34 1.80 15 

4 

I am able to design 

efficient database 

structures 

4.00 7.00 6.33 1.01 1.02 15 

5 

I am proficient in 

tuning database 

platforms for better 

performance 

2.00 7.00 5.86 1.46 2.12 14 

6 

I am good at 

working with 

databases via 

applications (such as 

.NET, Java, Excel) 

2.00 7.00 4.67 1.53 2.36 15 

7 

I can install and 

configure database 

platforms 

6.00 7.00 6.67 0.47 0.22 15 

8 

I am good at 

selecting and tuning 

indexes for better 

performance 

2.00 7.00 5.43 1.80 3.24 14 

 

 

 

# Question 

Strongl

y 

disagre

e 

 
Disagre

e 
 

Neithe

r agree 

nor 

disagre

e 

 Agree  
Strongl

y agree 
 

Tota

l 

1 

I am 

proficient at 

writing 

queries in 

SQL 

0.00% 0 0.00% 0 0.00% 0 6.67% 1 93.33% 
1

4 
15 

2 

I am 

proficient in 

database 

administrati

on 

0.00% 0 0.00% 0 6.67% 1 
40.00

% 
6 53.33% 8 15 

3 

I am good at 

tuning SQL 

queries for 

better 

performance 

0.00% 0 6.67% 1 6.67% 1 
40.00

% 
6 46.67% 7 15 
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4 

I am able to 

design 

efficient 

database 

structures 

0.00% 0 0.00% 0 13.33% 2 
26.67

% 
4 60.00% 9 15 

5 

I am 

proficient in 

tuning 

database 

platforms for 

better 

performance 

0.00% 0 7.14% 1 14.29% 2 
35.71

% 
5 42.86% 6 14 

6 

I am good at 

working 

with 

databases 

via 

applications 

(such as 

.NET, Java, 

Excel) 

0.00% 0 13.33% 2 46.67% 7 
26.67

% 
4 13.33% 2 15 

7 

I can install 

and 

configure 

database 

platforms 

0.00% 0 0.00% 0 0.00% 0 
33.33

% 
5 66.67% 

1

0 
15 

8 

I am good at 

selecting and 

tuning 

indexes for 

better 

performance 

0.00% 0 14.29% 2 21.43% 3 
21.43

% 
3 42.86% 6 14 
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Q6 - How often, on average, do you use, administer or 

otherwise work with database systems?  

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

How often, on 

average, do you use, 

administer or 

otherwise work with 

database systems? - 

Selected Choice 

1.00 2.00 1.07 0.25 0.06 15 

 

 

 

# Answer % Count 

1 Every day 93.33% 14 

2 Most days 6.67% 1 

3 Around once a week 0.00% 0 
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4 Every two or three weeks 0.00% 0 

5 Once a month 0.00% 0 

6 Less than once a month 0.00% 0 

7 I do not work with database systems 0.00% 0 

8 Other (please specify) 0.00% 0 

 Total 100% 15 

 

 

Q7 - Thinking about the database platforms that you use or 

administer the most, please estimate the sources of query 

traffic: 
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# Question 0-25%  
25-

50% 
 

50-

75% 
 

75-

100% 
 Total 

1 
Object-Relational 

Mapping frameworks 
40.00% 6 20.00% 3 33.33% 5 6.67% 1 15 

2 
User-written (adhoc) 

queries 
43.75% 7 37.50% 6 12.50% 2 6.25% 1 16 

3 

Queries from data 

visualisation or 

warehousing platforms 

42.86% 6 50.00% 7 7.14% 1 0.00% 0 14 

4 
Queries from third-

party software 
66.67% 10 6.67% 1 20.00% 3 6.67% 1 15 

5 
Queries from in-house 

applications 
7.69% 1 30.77% 4 15.38% 2 46.15% 6 13 

6 

Queries from reporting 

platforms (such as 

SSRS, Crystal Reports, 

SAP) 

26.67% 4 46.67% 7 13.33% 2 13.33% 2 15 

7 
Queries from other 

sources 
66.67% 6 22.22% 2 0.00% 0 11.11% 1 9 

 

Q8 - Please indicate how much you would agree, or disagree, 

with the following statements: 
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# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

I am broadly 

satisfied with query 

performance in my 

current 

environment(s) 

1.00 4.00 3.07 1.00 1.00 15 

2 

Tuning SQL queries 

originating from 

ORMs is 

straightforward 

1.00 6.00 2.53 1.50 2.25 15 

3 

Tuning SQL queries 

not originating from 

ORMs is 

straightforward 

1.00 6.00 3.60 1.14 1.31 15 

4 

Working with Big 

Data is increasingly 

part of my main job 

role or function 

1.00 4.00 2.47 1.15 1.32 15 

5 

The database 

schemas I work with 

are well-designed 

1.00 5.00 2.40 1.08 1.17 15 

6 

I feel confident 

working with non-

relational data 

sources 

1.00 6.00 3.13 1.45 2.12 15 

 

 

 

# Question 

Stron

gly 

disagr

ee 

 
Disag

ree 
 

Neith

er 

agree 

nor 

disag

ree 

 
Agre

e 
 

Stron

gly 

agree 

 

Don'

t 

know 

 
Tot

al 

1 

I am 

broadly 

satisfied 

with query 

performanc

e in my 

current 

environme

nt(s) 

6.67% 1 
26.67

% 
4 

20.00

% 
3 

46.67

% 
7 0.00% 0 

0.00

% 
0 15 

2 

Tuning 

SQL 

queries 

20.00

% 
3 

46.67

% 
7 

20.00

% 
3 

0.00

% 
0 0.00% 0 

13.33

% 
2 15 
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originating 

from 

ORMs is 

straightfor

ward 

3 

Tuning 

SQL 

queries not 

originating 

from 

ORMs is 

straightfor

ward 

6.67% 1 6.67% 1 
26.67

% 
4 

46.67

% 
7 6.67% 1 

6.67

% 
1 15 

4 

Working 

with Big 

Data is 

increasingl

y part of 

my main 

job role or 

function 

26.67

% 
4 

26.67

% 
4 

20.00

% 
3 

26.67

% 
4 0.00% 0 

0.00

% 
0 15 

5 

The 

database 

schemas I 

work with 

are well-

designed 

20.00

% 
3 

40.00

% 
6 

26.67

% 
4 

6.67

% 
1 6.67% 1 

0.00

% 
0 15 

6 

I feel 

confident 

working 

with non-

relational 

data 

sources 

6.67% 1 
40.00

% 
6 

20.00

% 
3 

6.67

% 
1 

20.00

% 
3 

6.67

% 
1 15 

 

Q26 - How relevant do you believe relational databases will 

be to organisations in the future?  
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# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

How relevant do you 

believe relational 

databases will be to 

organisations in the 

future? - Selected 

Choice 

3.00 4.00 3.93 0.26 0.07 14 

 

 

 

# Answer % Count 

1 Legacy, or only as business application backends 0.00% 0 

2 Rarely used 0.00% 0 

3 Regularly used, not critical 7.14% 1 

4 Heavily used, business-critical 92.86% 13 

5 Other (please specify) 0.00% 0 

 Total 100% 14 
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Q21 - Please indicate how much you would agree, or disagree, 

with the following statements: 

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

Relational integrity 

measures, like 

foreign key 

constraints, make 

working with 

databases harder 

when using ORMs 

1.00 4.00 2.30 1.10 1.21 10 

2 

Database systems 

need to integrate 

better with object-

oriented application 

development 

methods 

1.00 5.00 3.15 1.03 1.05 13 
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3 

Agile is an effective 

software 

development 

framework 

3.00 5.00 3.53 0.62 0.38 15 

4 

The use of ORMs is 

compatible with 

good SQL query 

design 

1.00 5.00 2.71 1.10 1.20 14 

5 

Normalisation of 

database schemas is 

compatible with the 

use of ORMs 

2.00 5.00 3.82 0.83 0.69 11 

 

 

 

# Question 

Strongl

y 

disagre

e 

 
Disagre

e 
 

Neithe

r agree 

nor 

disagre

e 

 Agree  
Strongl

y agree 
 

Tota

l 

1 

Relational 

integrity 

measures, 

like foreign 

key 

constraints, 

make 

working 

with 

databases 

harder when 

using ORMs 

30.00% 3 30.00% 3 20.00% 2 
20.00

% 
2 0.00% 0 10 

2 

Database 

systems 

need to 

integrate 

better with 

object-

oriented 

application 

development 

methods 

7.69% 1 15.38% 2 38.46% 5 
30.77

% 
4 7.69% 1 13 

3 

Agile is an 

effective 

software 

development 

framework 

0.00% 0 0.00% 0 53.33% 8 
40.00

% 
6 6.67% 1 15 

4 
The use of 

ORMs is 
14.29% 2 28.57% 4 35.71% 5 

14.29

% 
2 7.14% 1 14 
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compatible 

with good 

SQL query 

design 

5 

Normalisatio

n of 

database 

schemas is 

compatible 

with the use 

of ORMs 

0.00% 0 9.09% 1 18.18% 2 
54.55

% 
6 18.18% 2 11 

 

 

Q9 - When working with ORM  tools (from any perspective), 

what are the most regular performance-related challenges 

that you experience?  Please give as much detail as possible.  

 

When working with ORM tools (from any perspective), what are the most regular 

performance-related challenges that you experience?  Please give as much detail as 

possible. 

Overly generic SQL. None of the wider application knowledge is available to the ORM. 

Bad queries generated specifying many columns when only one or two needed 

SELECT * 

N/A 

I personally don't use ORM tools in my job. 

ORMs tend to generate queries that "work", but are not so great when it comes to 

efficiency or legibility. It's often difficult to tune those queries to run in a more efficient 

manner without removing the benefits of using an ORM in the first place.  We often run 

into some issues with parameter sniffing or horrible generated queries/plans as a result 

of the ORM, but most of the time the code is acceptable, if not the most efficient. 

Reproducing issues, understanding queries, dealing with lazy loading and RBAR 

operations. 

It's been a few years since I worked with an ORM as a developer (I'm a DBA now), but 

I can't seem to recall any *performance* related challenges. Most of the challenges I ran 

into were related to development and coding of the application with an ORM. 

Poorly written queries 

ORM is not a silver bullet and was never intended to solve 100% situations. The 

challenge is identify thw 10% cases where ORM will be a hinderance and convincing 

team of it 

constant churn in the procedure cache 

testing how much data can be put in here.  testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 
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testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 
 

 

Q10 - What do you think are the root cause(s) of any 

performance problems you have experienced with ORM s?  

Again, please give as much detail as possible.  

 

What do you think are the root cause(s) of any performance problems you have 

experienced with ORMs?  Again, please give as much detail as possible. 

Overly generic SQL. None of the wider application knowledge is available to the ORM. 

System generated queries are rarely optimal 

Developers (or other ORM users) aren't educated how to use it proficiently. And it does 

require some knowledge about how it works. 

bad query designs 

N/A 

I personally haven't came across any root causes of performance problems, but I've 

heard that they select too much data. 

The ORM just concentrates on accomplishing the task. For more complex tasks that 

results in some pretty poor performance with lots of nested queries.  Sometimes the 

performance issues arise from the developers adding "just one more thing" to code on a 

page, resulting in a large number of connect/disconnect operations for each new query.  

We had one issue where the actual SQL operations took .5s, but the connect/disconnect 

activity was taking over 30s.  Refactoring that code to do more operations at once, use 

stored procs to do some of the heavier lifting, and reduce the separate operations made 

a huge difference.  In this case, the issue was the developers trying to be efficient in 

adding new features, but neglecting the way the code was called behind the scenes. 

Lazy loading, select star, and RBAR operations 

N/A 

Indexes that should be included as part of an ORM implimentation depend on 

development initiative and skill. 

poorly written queries 

Bad schema/database/business/architecture design. Trying to hammer ORM to solve a 

problem ORM is not designed to solve 

developpers not understanding how a database works 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. testing how much data can be put in here. 

testing how much data can be put in here. 
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Q12 - Query performance tuning could be fully replaced by 

automated processes.  Please indicate if you: 

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

Query performance 

tuning could be fully 

replaced by 

automated 

processes.  Please 

indicate if you: 

1.00 5.00 3.57 1.18 1.39 14 

 

 

 

# Answer % Count 

1 Strongly agree 7.14% 1 

2 Agree 14.29% 2 

3 Neither agree nor disagree 14.29% 2 

4 Disagree 42.86% 6 

5 Strongly disagree 21.43% 3 

6 Don't know 0.00% 0 
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 Total 100% 14 

 

Q13 - What role could automation have to play in the future 

of query performance tuning?  

 

What role could automation have to play in the future of query performance tuning? 

Agree, but there will be outlying cases the software / ML algorithm cannot comprehend 

and cater for. 

Failing back to a previous query plan when a new one performs badly 

It could probably easily work with so called low hanging fruits - queries having obvious 

issues, like indexing (even if current SQL Server missing index suggestions are bad 

example for that). Similar with tuning engine configuration to best practices' 

recommendations. It is still way to go to automated code optimization. 

Automatic building of indexes.  Better choices by the system when auto-creating 

statistics and choosing query plans. 

Discovering queries that need to be tuned. Automatic tuning most likely won't pick the 

best option all the time. 

We see some of this now - better adapting for query plans, index tuning on the fly, and 

such. In the future we might see more in-memory indexes, and perhaps even some ways 

that see patterns and more aggressively cache or aggregate data for retrieval when it 

comes to those patterns.  I think we'll see more proactive alerting on query degradation 

as well so when queries start performing poorly compared to some automated baseline, 

the DBAs will get alerts to either act or flag to suspect/re-adjust the baseline. 

Guidance towards the right solutions, collecting and analyzing performance data that 

leads to tuning recommendations 

I don't think automation should play any role in query tuning. I feel it is a process best 

left to manually tuning due to intuition, understanding of and changes to business rules, 

and getting the most broad coverage of indexes as possible. 

Automated processes can help a lot with performance, in special gathering statistics and 

using heuristics to point hints, missing indexes, logging errors, etc 

don't think it's ever going to happen, need the human touch 
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Q23 - On a scale of 1 to 10, where 1 represents 'Very 

unimportant' and 10 represents 'Very important', how 

important do you think the following concepts are when 

considering organisational data stores?  

 

# Field Minimum Maximum Mean Std Deviation Variance Count 

1 Confidentiality 1.00 10.00 8.27 2.64 7.00 15 

2 Integrity 6.00 10.00 9.14 1.30 1.69 14 

3 Availability 7.00 10.00 8.64 1.23 1.52 14 

4 Flexibility 3.00 10.00 6.50 1.55 2.39 14 

5 Reliability 4.00 10.00 8.79 1.78 3.17 14 

6 Recoverability 6.00 10.00 8.93 1.39 1.92 14 

7 Auditability 3.00 10.00 6.62 2.10 4.39 13 

8 Performance 5.00 10.00 8.14 1.46 2.12 14 

 

 

Q16 - Thinking about the database systems that you use or 

administer the most, how far do you agree or disagree with 

the following statements?  
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# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

The relational 

database schemas 

are well-documented 

1.00 6.00 2.07 1.44 2.06 15 

2 

Object-relational 

mapping 

frameworks are the 

future of database 

interaction 

1.00 4.00 2.38 1.33 1.78 13 

3 

Automation should 

play a greater part 

in database 

performance tuning 

1.00 7.00 4.40 2.09 4.37 15 

 

 

 

# Question 

Strongl

y 

disagre

e 

 
Disagre

e 
 

Neither 

agree 

nor 

disagre

e 

 Agree  
Strongl

y agree 
 

Tota

l 

1 

The 

relational 

database 

schemas 

are well-

documente

d 

46.67% 7 33.33% 5 13.33% 2 6.67% 1 0.00% 0 15 

2 

Object-

relational 

mapping 

frameworks 

are the 

future of 

database 

interaction 

38.46% 5 23.08% 3 38.46% 5 0.00% 0 0.00% 0 13 

3 

Automatio

n should 

play a 

greater 

part in 

database 

performanc

e tuning 

20.00% 3 6.67% 1 20.00% 3 
46.67

% 
7 6.67% 1 15 

 



 

- 78 - 

 

 

Q22 - Agile development methodologies work well with 

relational databases.   Please indicate if you:  

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

Agile development 

methodologies work 

well with relational 

databases.   Please 

indicate if you: 

1.00 6.00 2.69 1.49 2.21 13 

 

 

 

# Answer % Count 

1 Strongly agree 23.08% 3 

2 Agree 38.46% 5 

4 Neither agree nor disagree 30.77% 4 

6 Disagree 7.69% 1 

7 Strongly disagree 0.00% 0 

 Total 100% 13 
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Q24 - Relational databases struggle to perform when dealing 

with query flows originating from ORM  tools.  Please 

indicate if you: 

 

 

# Field Minimum Maximum Mean 
Std 

Deviation 
Variance Count 

1 

Relational databases 

struggle to perform 

when dealing with 

query flows 

originating from 

ORM tools.  Please 

indicate if you: 

1.00 4.00 2.71 1.16 1.35 14 

 

 

 

# Answer % Count 

1 Strongly agree 14.29% 2 

2 Agree 42.86% 6 

4 Neither agree nor disagree 42.86% 6 

6 Disagree 0.00% 0 

7 Strongly disagree 0.00% 0 

 Total 100% 14 
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Appendix B:  Strong sentiment groupings from interview analysis  
 

Table 1: Strong-sentiment statements from practitioner interviews 

SQL [Interviewer]  Do you think SQL was an attractive language in general for 

application developers?  

[Participant]  Yeah, I think so. I think it's, you know, in terms of the 

structure, it's, it reads like English, which helps, if you, yeah, as long as 

it's been well formatted, and, and fairly well written economic get the gist 

of what's happening pretty quickly. There are some terribly written 

queries and stuff. But it's, I think, I think with the kind of the formatting 

and the linting and stuff that the different ideas there, it does help if I like 

when I would get sent a file, or someone would just email over stuff. I just 

chuck it in for my, to a way that, you know, whenever I would write it, 

reformat it, so I'm used to reading it. 

 

[Participant]  I think with SQL, if you think about your problem, and you 

have to say how you wanted to get the data, with a few key words, you 

can, you can at least make a good attempt at what, what the actual query 

should be? 

 

[Participant]  …once they learned the basics of the of the language is easy 

to get up and running, and at least start pulling down some data, joining 

pages together, etc. So they can, as analysts, they could get what they 

need. 

 

[Participant]  Because if I want to do something in SQL, I might need to 

know, like, 30 commands and total. But if I wanted to do something in 

[unintelligible] I might need to know, 100, or 200 commands to do. 

 

[Participant]  If somebody asked me, I want, you know, I want to become 

a data analyst. What kind of tools do I need, what kind of languages so I 

need to learn? And I would always say SQL is probably the first one 

because it's quite universal. 

 

Query Performance 

Improvements 

[Interviewer]  Is query performance a really hot topic for the companies 

you work for? Is it is it you know, a critical thing? Or is it an interesting 

that the DBA cares about?  

[Participant]  Yeah, so probably a lot more of the latter. thing. Yeah. 

When I, when I joined [company redacted], for example, I was there for 

two years, a lot of the analysts were already using SQL. And they, one of 

the DBAs was doing a training session. And it was a kind of a 

rudimentary intro to SQL for people that had a new SQL before often new 

analysts come in and learn the database structure. Yeah. And the only 

thing that he mentioned to do with kind of not locking the database, or 

any performance was making sure that you added with no lock on joints. 

And apart from that, there was no other mention of kind of how to 

optimize or, or anything like that. So you know, for the next two years, 

any any optimizations, you would have to go and speak to them directly. 

 

[Participant]  …use kind of distributed servers and clusters and nodes and 

things like that. It just seems to enhance and processing power. And so try 

and move everything to a server because when it's all kind of on premises, 

it feels a lot slower. 
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[Participant]  We were using a sort of a relational database to sort of 

query and query those 3 million rows, and it just couldn't handle it, it 

would take two minutes for a report to refresh. 

 

[Participant]  So sometimes stakeholders would be asking questions. And if 

Alice couldn't get the data within that 20 minute, kind of querying 

window, then it would be like, I can't analyze your data for the last year, I 

can only get it for the last week. 

 

Query Accessibility [Participant]  So yeah, I think having having more training and more 

knowledge, they would have been able to improve their queries and able to 

work more efficiently. But at the same time, with the kind of fairly 

beginner to intermediate knowledge that the analysts have got them, they 

can get the job done anyway. 

 

[Participant]  I think there should be some kind of, like help with queries, 

because I think at the moment, it gives you kind of errors, and it will say 

there was an error on this line, but it doesn't kind of tell you specifically, 

what caused the error and what the solution is. So I think there should 

have been kind of like, an error checking sort of algorithm that kind of 

helps you as you go along with your, of your coding. 

 

ORMs [Participant]  I think, knowing how helpful ORM is can be in terms of 

generating the the actual syntax for you. 

 

[Participant]  I've know, kind of no bone to pick with how queries and the 

way that [ORMs] will structure it, but it's more a case of I'm more more 

comfortable and familiar with with writing it myself. 

 

NoSQL [Participant]  I think NoSQL DBs will be the future thing. Databases with 

designs 50-60 years ago, yeah, the initial concepts. So for stuff that was 

applicable at the time it, it was good, but with the modern web 

applications and user interfaces, and just the volume and in different types 

of data we can collect. Trying to put it all into a SQL DB doesn't make 

sense when you can have something something like BigQuery or 

MongoDB, that you can store different types of stuff in there and install 

get good performance and usage. 

 

[Participant]  See if I've got if I've got audio visual text, on structured 

text surveys, and kind of standard business operations and orders data, 

depends on the questions that are coming in, I might have to jump to one 

dataset or another, and it might be weeks or even months before I go back 

to something. Yeah. Which point I've often forgotten what the schemer is. 

And what's, what's the right way? 

 

Future of Data [Participant]  No, I wouldn't say SQL is [popular]. No, it's not. I mean, it 

is used but not as, and, but not as popular as I would say it once was. 

 

[Participant]  I would start with SQL, because it's universal, but there's 

also kind of statistical tools you need to learn like, SAS and R, and 

Python nowadays, too. So, you know, those are the main sort of 

languages, I think that anyone would need to learn to become a data 

[scientist]. 
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[Participant]  So if you can imagine, like, for [company redacted], we had 

20 million visits to our website every week. And every sort of visit might 

have, say, 30 interactions. So with data, you know, something like 600 

million rows of data every week. And yeah, the way that Google BigQuery 

was able to kind of process that data was really incredible in comparison 

to sort of more traditional kind of databases. 

 

[Participant]  I think big data is is like the way forward for almost every 

kind of solution. 

 

[Interviewer] Do you think that the DBA is dead yet? Or, they've been 

predicting it for 50 years, but do you think the DBA is finally … going to 

have to upskill or get out?  

[Participant] I think partially, I think what's gonna happen with kind of 

probably increase in DevOps, increase in data analytics and data science, 

and then stop being managed on the cloud DBA role, they will become 

more of the data engineering with BI-type roles. 

 

[Discussing ability of relational databases to survive] 

[Participant]  …Oracle venturing into other areas, you know, I mean? Oh, 

yes. But as a pure database, it's going to be very difficult. 

 

[Participant]  …unless something dramatically comes in which takes away 

databases, then, then maybe, but … well, you can add things to the you 

know, you can add, add things, you know, we are beginning to add things 

to SQL Server. And and I'm just saying that, unless something really 

dramatically comes and takes away databases, I can't I think they're here 

to stay. 

 

 

Developers [Participant] I mean, they [the developers] typically work with API's, 

because they're like, you know, as a digital corporation, [company 

redacted] a lot of a lot of the data was directly from the web, so and that 

there was a sort of a mixture. 

[Participant]  …with a lot of the analysts and people I was working with, 

they weren't particularly [good] with SQL in general in terms of writing 

their own queries, yeah, and after they would come to me to help them 

write their own queries. 

 

Data Governance [from a conversation about improving the data layer] 

[Interviewer]  …you've got an unlimited money magic wand, what would 

you do?  

[Participant]  I first thing I would do from our experience, is make it 

compulsory that whatever type of database you've got the company 

invests in, in data dictionaries, or some sort of information based 

knowledge base on this is what we've got, why we're collecting it, where 

it's actually coming from, not just one DBA Another DBA that left years 

ago, yeah, they were getting this, or I remember one, I was looking at 

different weather data sets that we had on the site. Where's this data 

coming from? Everyone asked, no one knew? Well, as an analyst, I don't 

want to trust it. What if it's, yeah, what if it's just someone's someone's 

made something that's automated? And it's just randomly being 

generated? It doesn't even match up? So having that a kind of better 

governance of the data? 
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[Participant]  …because then I've got the trust in it, because I don't want 

to use data that I'm not going to trust, or I can't fully, fully account for 

the kind of the lifeline of where it's come from. Because I'd rather not 

have the data at all. 

 

Data Analysis [Participant] …as an analyst, I don't care on a row-by-row level, I care on 

the what's the last 10,000 or 100,000 people that have done this? And 

what what attributes Do they have that are similar. So I can actually use 

this data to then market more effectively, or I have a pop up, come up to 

them on the side. But if it takes 10-15 minutes, you know, they've already 

left the site. 

 

[Participant] …customer's perspective, as you say, they want everything to 

be to work quickly and efficiently and not have any worries about [that]. 

 

[Participant] … typically the analytics sandbox, had an update of either 

every 15 minutes or every hour. So when we were planning, how do we 

want to do personalization, every we were looking at even every 10 

seconds would be too slow. We wanted it ideally every every [sic] second, 

if possible, which is where kind of …  

[Interviewer] start running into practical difficulties. 

[Participant] Yes. 

 

[Participant] …you have to be extremely efficient at writing queries. 

 

[Participant]  Yeah, I was cuz I still feel like I'm I was thinking about 

logic in an old sort of sequel [SQL] way. So sometimes when I'm learning 

new functions and our Python are kind of look at it, and it just feels like 

really difficult to do the same thing that I wanted to do. And SQL which 

would, which is really easy to do. 

 

[Participant]  I work with big data sometimes as well. So, and that's how 

they're I think that's how they're raised. To kind of process, you know, 

billions and billions of rows of data very efficiently. So when I work with 

like, Google Cloud is incredible how fast as in comparison to something 

like Teradata. 

 

[Participant] I mean, for me, I don't really care where the data comes from 

neither, whether it's cloud or not. 

 

[Participant] I just want it [the database] to be available. I don't want it 

to take hours for me to get the data that I need. Because as an analyst, 

often you'll be asked a question, and then half an hour later, someone will 

walk past your desk and the drive go, do you manage to look at that? 

 

[Participant]  …companies are starting to realize that just collecting and 

collecting data isn't why the value is the value is going to come from, from 

actually using it. 

 

Cloud Data 

Analytics 

[Participant] …because everything's put everything's in one we see. The 

beauty is everything's in one area. application. So you, you do the data 

loading in one place. You can create the tables in one place everything is 

in a central location, you know, you don't need to go on SQL plus or SQL 

developer to, you know, to work with the data. You don't need to go on to 

forms. 
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[Participant] But it's having it on the on the cloud with say AWS, it, I 

think it's more beneficial than is not beneficial. Because you aren't, part of 

it is you're not really looking, you know, do you know what you want 

people to know, and you know, what you want people you'd be able to 

control on what people get to see, but you'd be someone else is going to be 

looking after that information? 

 

3 Vs of Big Data [Participant] So even even [sic] with one month of data, it wasn't really 

possible to do a join in Tara [Tera]data, then due to the volume of data 

that was. 

 

[Interviewer] So that I mean, I might know the answer to this one, then. 

But would it be fair to say that the relational database system Teradata 

in this case wasn't necessarily the best the best solution for what you're 

trying to do there?  

[Participant] Yeah, absolutely. So that that much day, so it wasn't 

possible to really process and aggregate the data within Teradata. 
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Appendix C :  Query objectives and code listings from the initial 

investigation 
 

Table 1: Query Objective O1 

Descriptor Values 

Summary Return the mean average air temperature for all buoys on a month-by-month, year-by-

year basis, ordered by month and year ascending. 

Manual SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],  

 AVG([factTAO].[airTemp]) AS [airtemp__avg]  

FROM [factTAO]  

INNER JOIN [dimDate]  

ON  ([factTAO].[dateKey] = [dimDate].[dateKey])  

GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]  

ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC 

Python/Django  FactTAO.objects.all().select_related('datekey').values('datekey__mth

num', 

'datekey__yrnum').annotate(Avg('airtemp')).order_by('datekey__mthnum

', 'datekey__yrnum') 

ORM SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],  

 AVG(CONVERT(float, [factTAO].[airTemp])) AS [airtemp__avg]  

FROM [factTAO]  

INNER JOIN [dimDate] ON ([factTAO].[dateKey] = [dimDate].[dateKey])  

GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]  

ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC 
 

 

Table 2: Query Objective O2 

Descriptor Values 

Summary Return the earliest and latest dates for which buoy sensor readings exist within the data 

set. 

Manual SQL SELECT MIN(f.dateKey) [earliestDate], MAX(f.dateKey) [latestDate]  

FROM dbo.factTAO f  

Python/Django  FactTAO.objects.aggregate(Min('datekey'), Max('datekey')) 

ORM SQL SELECT MIN([factTAO].[dateKey]) AS [datekey__min],  

 MAX([factTAO].[dateKey]) AS [datekey__max]  

FROM [factTAO] 

 

 

Table 3: Query Objective O3 

Descriptor Values 

Summary Return the latitude and longitude positions of all buoys in January 1984, with no 

ordering. 

Manual SQL SELECT f.obsID, l.lat, l.long 
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FROM dbo.factTAO f  

INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey 

INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey 

WHERE d.yrNum = 1984 AND d.mthNum = 1 

Python/Django  FactTAO.objects.select_related('dimlocation__locationkey').all() 

.select_related('dimdate__datekey').all().values('obsid', 

'locationkey__lat', 'locationkey__long').filter(datekey__mthnum = 

1, datekey__yrnum = 1984) 

ORM SQL SELECT [factTAO].[obsID], [dimLocation].[lat], [dimLocation].[long]  

FROM [factTAO]  

INNER JOIN [dimLocation]  

ON ([factTAO].[locationKey] = [dimLocation].[locationKey])  

INNER JOIN [dimDate]  

ON ([factTAO].[dateKey] = [dimDate].[dateKey])  

WHERE ([dimDate].[mthNum] = 1 AND [dimDate].[yrNum] = 1984) 

 

Table 4: Query Objective O4 

Descriptor Values 

Summary  Analyse sea surface temperature during the year 1990, and return all rows, including 

missing data, indicating as anomalous all values where the sea surface temperature is 

further than 2.5 standard deviations from the average for the year, ordered by date 

ascending. 

Manual SQL SELECT d.dateKey, f.obsID, f.seaSurfaceTemp,  

 CASE    WHEN    f.seaSurfaceTemp IS NULL  

         THEN 'Data missing' 

         WHEN ABS(f.seaSurfaceTemp - sd.[avg]) > (2.5 * 

sd.sd)                   THEN 'Anomalous'    

                ELSE 'Normal' 

 END [isAnomalous] 

FROM dbo.factTAO f  

INNER JOIN dbo.dimDate d   

ON f.dateKey = d.dateKey  

CROSS JOIN ( 

 SELECT AVG(f.seaSurfaceTemp) [avg], STDEV(f.seaSurfaceTemp) 

[sd] 

 FROM dbo.factTAO f 

 INNER JOIN dbo.dimDate d  

 ON      f.dateKey = d.dateKey  

 WHERE d.yrNum = 1990 ) sd   

WHERE d.yrNum = 1990  

ORDER BY d.dateKey ASC  

Python/Django  aggs = 

FactTAO.objects.select_related('datekey').filter(datekey__yrnum = 

'1990').aggregate(Avg('seasurfacetemp'), StdDev('seasurfacetemp')) 

 

outer = FactTAO.objects.select_related('datekey').values('datekey', 

'obsid', 'seasurfacetemp', isAnomalous = Case(When(seasurfacetemp = 

None, then = Value('Data Missing')), default = Value('Normal'), 

output_field = CharField() )).filter(datekey__yrnum = 

1990).order_by('datekey') 

 

for i in outer: 
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 if abs((float(i.get('seasurfacetemp') or 0) - 

 aggs.get('seasurfacetemp__avg'))) > 2.5 * 

 aggs.get('seasurfacetemp__stddev') and (i.get('isAnomalous') 

!= 'Data  Missing'): 

        i['isAnomalous'] = 'Anomalous' 

 

ORM SQL (@P1 int) 

SELECT AVG(CONVERT(float, [factTAO].[seaSurfaceTemp])) AS 

[seasurfacetemp__avg],  STDEVP([factTAO].[seaSurfaceTemp]) AS 

[seasurfacetemp__stddev]  

FROM  [factTAO]  

INNER  JOIN [dimDate]  

ON  ([factTAO].[dateKey] = [dimDate].[dateKey])  

WHERE  [dimDate].[yrNum] = @P1 

 

(@P1 nvarchar(24),@P2 nvarchar(12),@P3 int) 

SELECT [factTAO].[dateKey], [factTAO].[obsID], 

[factTAO].[seaSurfaceTemp],  

 CASE WHEN [factTAO].[seaSurfaceTemp] IS NULL  

 THEN @P1  

 ELSE @P2  

 END AS [isAnomalous]  

FROM  [factTAO]  

INNER  JOIN [dimDate] ON ([factTAO].[dateKey] = 

[dimDate].[dateKey])  

WHERE [dimDate].[yrNum] = @P3  

ORDER  BY [factTAO].[dateKey] ASC 

 

 

Table 5: Query Objective O5 

Descriptor Values 

Summary Return the approximate distance in miles between the two buoys that were furthest apart 

on 01 May 1994, ignoring missing data. 

Manual SQL ;WITH locationData AS ( 

 SELECT f.obsID, d.dateKey, l.lat, l.long 

 FROM dbo.factTAO f  

 INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey  

 INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey  

 WHERE d.dateKey = '1994-05-01' ),  

        allCombinations AS ( 

 SELECT l1.obsID [from], l2.obsID [to],  

  l1.lat [fromLat], l2.lat [toLat],  

  l1.long [fromLong], l2.long [toLong] 

 FROM locationData l1  

 CROSS JOIN locationData l2 ),  

        distances AS ( 

        SELECT c.[from], c.[to], c.fromLat, c.fromLong, c.toLat, 

c.toLong,  

  MAX(ACOS(SIN(c.fromLat)*SIN(c.toLat) +  

                COS(c.fromLat)*COS(c.toLat)*COS(c.toLong - 

c.fromLong)) * 3958.75) [d] 

        FROM allCombinations c  

        GROUP BY c.[from], c.[to], c.[fromLat], c.[toLat], c.fromLong, 

c.toLong )  
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SELECT TOP 1 CAST(d.d AS NUMERIC(16,2)) [MaxDistance] 

FROM distances d 

ORDER BY [d] DESC 

Python / 

Django  

from django.db.models import Max 

import math 

 

locationData = FactTAO.objects.select_related('datekey', 

'locationkey').values('obsid', 'datekey', 'locationkey__lat', 

'locationkey__long').filter(datekey = '1994-05-01')  

 

locationDataList = list(locationData)  

vals = [] 

for i in locationDataList: 

 vals.append(list(i.values())) 

allCombinations = [] 

for i in range(0, len(vals)): 

 for j in range(0, len(vals)): 

  r = dict({"from":vals[i][0], "to":vals[j][0], 

"fromLat":vals[i][2], "toLat":vals[j][2], "fromLong":vals[i][3], 

"toLong":vals[j][3]}) 

  allCombinations.append(r) 

 

for row in allCombinations: 

 LocationDataTempTable(fromField = row.get("from"), toField = 

row.get("to"), fromLat = row.get("fromLat"), toLat = 

row.get("toLat"), fromLong = row.get("fromLong"), toLong = 

row.get("toLong")).save()  

   

all = LocationDataTempTable.objects.all() 

dists = [] 

for i in all: 

 dists.append(i.distance) 

max(dists) 

ORM SQL declare @p1 int  set @p1=NULL   

exec sp_prepexec @p1 output,N'@P1 nvarchar(20)',N'SELECT 

[factTAO].[obsID], [factTAO].[dateKey], [dimLocation].[lat], 

[dimLocation].[long] FROM [factTAO] INNER JOIN [dimLocation] ON 

([factTAO].[locationKey] = [dimLocation].[locationKey]) WHERE 

[factTAO].[dateKey] = @P1',N'1994-05-01'   

select @p1 

 

(the following query is repeated 1,156 times with different 

parameters) 

declare @p1 int  set @p1=NULL   

exec sp_prepexec @p1 output,N'@P1 int,@P2 int,@P3 float,@P4 float,@P5 

float,@P6 float',N'SET NOCOUNT ON INSERT INTO [locationDataTempTable] 

([from], [to], [fromLat], [toLat], [fromLong], [toLong]) VALUES (@P1, 

@P2, @P3, @P4, @P5, @P6); SELECT CAST(SCOPE_IDENTITY() AS 

bigint)',997,997,46.064999999999998,46.064999999999998,57.38000000000

0003,57.380000000000003   

select @p1 

 

SELECT [locationDataTempTable].[uqid], 

[locationDataTempTable].[from], [locationDataTempTable].[to], 

[locationDataTempTable].[fromLat], [locationDataTempTable].[toLat], 

[locationDataTempTable].[fromLong], [locationDataTempTable].[toLong] 

FROM [locationDataTempTable] 
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Appendix D:   

Similarity scoring and schema selection – code listings  
 

This appendix contains the code listings referenced in Chapter 7. 

 

Code Listing 1:  Python implementation of Algorithm 1 

def calculateQuerySimilarity (cubeA, cubeB): 

  #calculate Hamming distance 

  hamming = 0; 

  cubeAEdgeCount = 0; 

  cubeBEdgeCount = 0; 

   

  for i in range(0, len(cubeA)): 

    for j in range(0, len(cubeA[0])): 

      for k in range(0, len(cubeA[0][0])): 

        if cubeA[i][j][k] != cubeB[i][j][k]: 

          hamming += 1; 

        if cubeA[i][j][k] == 1: 

          cubeAEdgeCount += 1; 

        if cubeB[i][j][k] == 1: 

          cubeBEdgeCount += 1; 

   

  maxEdges = max(cubeAEdgeCount, cubeBEdgeCount);         

   

  print("Hamming distance: " + str(hamming)); 

  print("Maximum number of edges: " + str(maxEdges)); 

 

  similarity = round(1.0 - ((hamming / 2.0) / maxEdges),2); 

  #print("Query similarity score: " + str(similarity)); 

  return similarity; 

 

  # example wrapper code 

  def main (sqlQueryA, sqlQueryB): 

      import math; 

      edgesA = buildEdgeArray (sqlQueryA); 

      edgesB = buildEdgeArray (sqlQueryB); 

      cubeA = buildAdjacencyCube (edgesA, edgesB, "A"); 

      cubeB = buildAdjacencyCube (edgesA, edgesB, "B"); 

      similarity = calculateQuerySimilarity (cubeA, cubeB); 

      return similarity; 

 

 

Code Listing 2:  Python implementation of Algorithm 2 

from similarity_functions import *  # this is our similarity function code 

import psycopg2 # connect to PostgreSQL 

import time # standard library 

 

# connect to the PgSQL DB 

conn = psycopg2.connect("<credentials>") 

testsetdb = conn.cursor() 

testsetdb.execute('SELECT rid, stmt, alt FROM testdataraw ORDER BY rid;') 

testset = testsetdb.fetchall(); 

 

# for each query in the cache (sqlQueryB), run similarity function 

for i in testset: 

        print 'Processing test query ' + str(i[0]) + '...' 
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        sqlQueryA = i[1] 

        querycachedb = conn.cursor() 

        querycachedb.execute('SELECT queryid, querytextoriginal, queryweight  

          FROM querycache ORDER BY queryid;') 

        querycache = querycachedb.fetchall(); 

        querycachedb.close() 

        comparison = [] 

        simErrorCount = 0 

        print 'Assessing similarity of query against cached queries...' 

        for j in querycache: 

                sqlQueryB = j[1] 

                try: 

                        similarity = main(sqlQueryA, sqlQueryB) 

                except: 

                        simErrorCount += 1 

                        similarity = 0 

                similarity = similarity * j[2] # query weight adjustment 

                # store query ID and similarity in array 

                comparison.append((j[0], similarity)) 

 

        print 'Total similarity errors: ' + str(simErrorCount) 

        # lookup k 

        print 'Fetching k value...' # we do this each time in case K changes 

        kdb = conn.cursor() 

        kdb.execute('SELECT k FROM k;') 

        kval = kdb.fetchall(); 

        for k in kval: 

                k = k[0] 

        kdb.close() 

 

 

Code Listing 3:  Finding k-th similar queries to a given query 

# Fetch k nearest neighbours by similarity 

        print 'Finding nearest neighbours...' 

        comparison = sorted(comparison, key=lambda entity: entity[1], reverse=True) # sort 

by similarity descending 

        neighbours = comparison[:int(k)] # slice top k neighbours from list 

        csv = '' 

        for n in neighbours: 

                csv = csv + str(n[0]) + ', ' # query id 

                print 'Identified neighbour: query ' + str(n[0]) + ' with similarity score 

' + str(n[1]) 

        csv = csv[:-2] # trim last comma and space 

        # Fetch majority verdict of schema assignment from neighbours 

        verdictdb = conn.cursor() 

        sql = 'SELECT assignedschemaid FROM querycache WHERE queryid IN (' + csv + ')' 

        verdictdb.execute(sql) 

        verdict = verdictdb.fetchall() 

        verdictdb.close() 

 

        print 'Finding majority verdict...' 

 

        base = 0 

        alt = 0 

        for p in verdict: 

                if p[0] == 0: 

                        base += 1 

                if p[0] == 1: 

                        alt += 1 

 

        if base >= alt: 
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                verdict = 'base' 

        if alt > base: 

                verdict = 'alt' 

 

        print 'Verdict: Execute against ' + verdict + '.' 

        # Start query execution timer 

        startTime = time.time() 

 

        # Execute query and return results to caller 

        print 'Executing query...' 

        sql = '' 

        executeWrapper = conn.cursor() 

        if verdict == 'base': 

                sql = [i[1]] 

        if verdict == 'alt': 

                sql = [i[2]] 

        executeWrapper.callproc('runQuery', sql) 

        executeWrapper.execute('commit') 

        executeWrapper.close() 

 

        # Stop query execution timer 

        stopTime = time.time() 

        duration = stopTime - startTime 

        print 'Query executed in ' + str(duration) + ' seconds.' 

 

        # Write query, alt query (if applicable), neighbour query IDs and 

        # execution time to state table for later async processing 

        print 'Writing metadata to state table for asynchronous processing...' 

        sql = "INSERT INTO queryqueue SELECT '" + i[1] + "', '" + i[2] + "', " + csv + ",  

            " + str(duration) 

        sql = [sql] 

        addToQueue = conn.cursor() 

        addToQueue.callproc('RunQuery', sql) 

        addToQueue.execute('commit') 

        addToQueue.close() 

 

 

Code Listing 4:  Query table definitions 

CREATE TABLE QueryCache ( 

    QueryID INTEGER NOT NULL PRIMARY KEY, 

    QueryTextOriginal VARCHAR NOT NULL, 

    QueryWeight DOUBLE PRECISION, 

    AssignedSchemaID INT, 

    QueryTextNew VARCHAR, 

    LastExecutionDurationSeconds INT 

) 

 

CREATE TABLE K ( 

    K DOUBLE PRECISION 

) 

 

CREATE TABLE queryqueue ( 

  rid INT, 

  querytextoriginal VARCHAR(1000), 

  querytextnew VARCHAR(1000), 

  n1 INT, 

  n2 INT, 

  n3 INT, 

  lastexecutiondurationseconds DOUBLE PRECISION ) 
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Code Listing 5:  Adjusting query weightings 

# Open cursor over state table 

import psycopg2 

import time 

from similarity_functions import * 

conn = psycopg2.connect("<credentials>") 

statetabledb = conn.cursor() 

 

statetabledb.execute("SELECT rid, n1, n2, n3, lastexecutiondurationseconds FROM qu                                     

eryqueue ORDER BY rid ASC;") 

statetable = statetabledb.fetchall() 

statetabledb.close() 

 

# For each neighbour selected for a query, fetch execution time 

qc = conn.cursor() 

qc.execute("SELECT k FROM k;") 

k = qc.fetchall() 

for m in k: 

        k = m[0] 

k = int(k) 

 

for i in statetable: 

        print 'Test query ' + str(i[0]) + ' had execution time : ' + str(i[4]) + '                                      

seconds.' 

 

# Compare against execution time of test query 

# If neighbour ran slower, increase weighting by 0.1 

# If neighbour ran quicker, decrease weighting by 0.1, vice versa. 

 

        for j in xrange(1, k + 1): 

                print j 

 

                reduceWeight = 0 

                increaseWeight = 0 

 

                sql = "SELECT lastexecutiondurationseconds FROM querycache WHERE q                                     

ueryid = " + str(i[j]) 

                qc.execute(sql) 

                exectime = qc.fetchall() 

                for n in exectime: 

                        exectime = n[0] 

 

                print 'Top matched query ' + str(i[j]) + ' executed in ' + str(exe                                     

ctime) + ' seconds.' 

                print 'Delta: ' + str((float(str(exectime)) - float(str(i[4])))) +                                      

' seconds.' 

                if (exectime - i[4]) < 0: 

                        reduceWeight = 1 

                        sql = 'UPDATE querycache SET queryweight = queryweight - 0                                     

.1 WHERE queryid = ' + str(i[j]) 

                if (exectime - i[4]) > 0: 

                        increaseWeight = 1 

                        sql = 'UPDATE querycache SET queryweight = queryweight + 0                                     

.1 WHERE queryid = ' + str(i[j]) 

                print ' ' 

        sql = [sql] 

        qc.callproc('RunQuery', sql) 

        qc.execute('commit') 

        sql = 'DELETE FROM queryqueue WHERE rid = ' + str(i[0]) 

        sql = [sql] 

        qc.callproc('RunQuery', sql) 
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        qc.execute('commit') 

        print ' ' 

 

qc.close() 

 

 

 

Code Listing 6:  Creating and populating the Chicago data sub-schemas 

 

CREATE TABLE chicagoCrimeTypeAlpha (  

 rID integer,  

 rCaseNumber varchar,  

 rDate timestamp,  

 rIUCR varchar,  

 rPrimaryType varchar,  

 rDescription varchar, 

 rArrest boolean,  

 rDomestic boolean,  

 rFBICode varchar,  

 rYear smallint,  

 rUpdatedOn timestamp );  

  

CREATE TABLE chicagoCrimeTypeBeta ( 

 LIKE chicagoCrimeTypeAlpha );  

  

  

CREATE TABLE chicagoCrimeLocationAlpha (  

 rID integer,  

 rDate timestamp,  

 rBlock varchar,  

 rBeat varchar,  

 rDistrict varchar,  

 rWard integer,  

 rCommunityArea varchar,  

 rxCoordinate integer,  

 ryCoordinate integer,  

 rLatitude double precision,  

 rLongitude double precision,  

 rLocation varchar ); 

  

CREATE TABLE chicagoCrimeLocationBeta (  

 LIKE chicagoCrimeLocationAlpha ); 

  

INSERT INTO chicagoCrimeTypeAlpha  

 SELECT rID, 

   rCaseNumber, 

   rDate, 

   rIUCR, 

   rPrimaryType, 

   rDescription, 

   rArrest, 

   rDomestic,  

   rFBICode, 

   rYear, 

   rUpdatedOn    

 FROM  chicagoBase  

 WHERE  rDate <= ( SELECT MIN(rDate) + (MAX(rDate) - MIN(rDate)) / 2 FROM chicagoBase ) 

  

INSERT INTO chicagoCrimeTypeBeta  

 SELECT chicagoBase.rID, 

   chicagoBase.rCaseNumber, 

   chicagoBase.rDate, 

   chicagoBase.rIUCR, 
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   chicagoBase.rPrimaryType, 

   chicagoBase.rDescription, 

   chicagoBase.rArrest, 

   chicagoBase.rDomestic,  

   chicagoBase.rFBICode, 

   chicagoBase.rYear, 

   chicagoBase.rUpdatedOn    

 FROM  chicagoBase  

 LEFT JOIN chicagoCrimeTypeAlpha 

 ON   chicagoBase.rID = chicagoCrimeTypeAlpha.rID  

 WHERE  chicagoCrimeTypeAlpha.rID IS NULL 

  

INSERT INTO chicagoCrimeLocationAlpha 

 SELECT  rID,  

   rDate,  

   rBlock,  

   rBeat,  

   rDistrict,  

   rWard,  

   rCommunityArea,  

   rxCoordinate,  

   ryCoordinate,  

   rLatitude,  

   rLongitude,  

   rLocation  

 FROM  chicagoBase  

 WHERE  rDate <= ( SELECT MIN(rDate) + (MAX(rDate) - MIN(rDate)) / 2 FROM chicagoBase ) 

  

INSERT INTO chicagoCrimeLocationBeta 

 SELECT  chicagoBase.rID,  

   chicagoBase.rDate,  

   chicagoBase.rBlock,  

   chicagoBase.rBeat,  

   chicagoBase.rDistrict,  

   chicagoBase.rWard,  

   chicagoBase.rCommunityArea,  

   chicagoBase.rxCoordinate,  

   chicagoBase.ryCoordinate,  

   chicagoBase.rLatitude,  

   chicagoBase.rLongitude,  

   chicagoBase.rLocation  

 FROM  chicagoBase  

 LEFT JOIN chicagoCrimeLocationAlpha 

 ON   chicagoBase.rID = chicagoCrimeLocationAlpha.rID  

 WHERE  chicagoCrimeLocationAlpha.rID IS NULL 

 

 

 

Code Listing 7:  Random SQL query generator 

SET NOCOUNT ON  

GO 

 

DROP PROCEDURE IF EXISTS dbo.chicagoQueryGenerator  

GO  

 

CREATE PROCEDURE dbo.chicagoQueryGenerator  

AS BEGIN 

 

DECLARE @columnCount TINYINT  

DECLARE @counter TINYINT = 0 

DECLARE @thisColumn VARCHAR(255) 

DECLARE @select VARCHAR(500) = 'SELECT ' 
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DECLARE @used TABLE ( [name] VARCHAR(255) ) 

 

 

 SET  @columnCount = CEILING((  

                 SELECT       TOP 1 c.[column_id]  

                 FROM         sys.columns c 

                 INNER        JOIN sys.tables t ON c.object_id = t.object_id  

                 WHERE        t.[name] = 'chicagobase'  

                 ORDER        BY NEWID() ) / 2.0) 

 

 WHILE @counter < @columnCount  

 BEGIN 

         SET @thisColumn = (  

                 SELECT        TOP 1 c.[name]  

                 FROM        sys.columns c 

                 INNER        JOIN sys.tables t ON c.object_id = t.object_id  

                 LEFT        JOIN @used u ON c.[name] = u.[name]  

                 WHERE        u.[name] IS NULL  

                 AND                t.[name] = 'chicagobase'  

                 ORDER        BY NEWID() )  

         INSERT INTO @used VALUES ( @thisColumn ) 

         SET @select = @select + @thisColumn + ', ' 

         SET @counter += 1  

 END  

 SET  @select = LEFT(@select, LEN(@select) - 1) + ' ' 

 

 DECLARE @from VARCHAR(500) = ' FROM chicagoBase' + ' '  

 

 DECLARE @where VARCHAR(500) = 'WHERE (1=1)' + ' '  

 -- pick a random number of where clauses, between 0 and 2 

 DECLARE @numOfWheres TINYINT = ( SELECT ABS(CHECKSUM(NEWID()) % 3 ) ) 

 DECLARE @colName VARCHAR(255), @dType VARCHAR(255), @val VARCHAR(255) 

 DECLARE @operator TINYINT, @letters TINYINT 

 WHILE @numOfWheres > 0  

 BEGIN  

  -- pick a random column from the chicagoBase table  

  SELECT @colName = c.[name], @dType = y.[name]  

  FROM sys.columns c  

  INNER JOIN sys.types y ON c.system_type_id = y.system_type_id  

  WHERE c.object_id = OBJECT_ID('chicagoBase')  

  AND  c.column_id = ( SELECT ABS(CHECKSUM(NEWID()) %  

    ( SELECT COUNT(*) FROM sys.columns c WHERE c.object_id = 

OBJECT_ID('chicagoBase') ) + 1 )  

  ) 

  

  -- now select a random value corresponding to the datatype of the randomly 

chosen column 

  IF @dType = 'bit' SET @val = CAST(ABS(CHECKSUM(NEWID()) % 2) AS 

VARCHAR(255)) 

  IF @dType LIKE ('%tinyint%') SET @val = CAST(ABS(CHECKSUM(NEWID()) % 255) 

AS VARCHAR(255))  

  IF @dType = 'datetime' SET @val = '''' + CONVERT(VARCHAR, 

DATEADD(MINUTE,(ABS(CHECKSUM(NEWID())) % 2629800) * -1, GETDATE()), 120) + '''' -- any 

time in last 5 years  

  IF @dType IN ('decimal', 'numeric', 'float') SET @val = 

CAST((ABS(CHECKSUM(NEWID())) % 5000) + ((ABS(CHECKSUM(NEWID())) % 100)/100.0) AS 

VARCHAR(255))  

  IF @dType IN ('varchar') BEGIN  

   SET @val = '' 

   SET @letters = ABS(CHECKSUM(NEWID())) % 10 + 1  

   WHILE @letters > 0 BEGIN 

    SET @val = @val + CHAR(ABS(CHECKSUM(NEWID())) % 26 + 96) -- 

up to 10 random lowercase ASCII characters 

    SET @letters -= 1 
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   END  

   SET @val = '''' + @val + '''' 

  END  

 

  -- construct the WHEREs  

  SET @operator = ABS(CHECKSUM(NEWID())) % 4 + 1 

  SET @where = @where + 'AND ' + @colName + ' ' +   

   CASE WHEN @operator = 1 THEN '='  

     WHEN @operator = 2 AND @val NOT LIKE ('%''%') THEN 

'>'  

     WHEN @operator = 2 AND @val LIKE ('%''%') THEN '='  

     WHEN @operator = 3 AND @val NOT LIKE ('%''%') THEN 

'<'  

     WHEN @operator = 3 AND @val LIKE ('%''%') THEN '='  

     WHEN @operator = 4 THEN '!=' END   

  SET @where = @where + ' ' + @val + ' ' 

 

  SET @numOfWheres -= 1 

 END  

 

 -- remove the WHERE (1=1) placeholder  

 IF @where NOT LIKE ('% AND %') 

  SET @where = REPLACE(@where, 'WHERE (1=1) ', '')  

 ELSE 

  SET @where = REPLACE(@where, 'WHERE (1=1) AND', 'WHERE')  

 

 

 -- concatenate into a statement 

 DECLARE @output VARCHAR(1000) = @select + @from + ISNULL(@where,'') + ';'  

 SELECT @output 

 END 

 

GO 

 

 

Code Listing 8:  Creating query mappings to alternative Chicago sub-schemas 

-- function to transform a given query on the base schema into a 4-table schema  

DECLARE @test VARCHAR(1000) = 'SELECT rLocation, rWard, rDescription, rLatitude  FROM 

chicagoBase WHERE rIUCR != ''iqfi'' ;' 

SELECT * FROM dbo.chicagoQueryTransformer(@test) 

 

 

DROP FUNCTION IF EXISTS dbo.chicagoQueryTransformer 

GO  

CREATE FUNCTION dbo.chicagoQueryTransformer ( @inboundQuery VARCHAR(1000) )  

RETURNS @outputs TABLE ( inboundQuery VARCHAR(1000), outboundQuery VARCHAR(1000) ) 

AS BEGIN 

 -- use flags to determine which shard and/or partition to use 

 DECLARE @typeShardFlag BIT = 0, @locationShardFlag BIT = 0 

 DECLARE @alphaPartitionFlag BIT = 0, @betaPartitionFlag BIT = 0 

 DECLARE @rDateCount BIGINT, @medianDate DATETIME, @rDate DATETIME 

 DECLARE @stringBash VARCHAR(1000), @outboundQuery VARCHAR(1000) 

 

 SET @inboundQuery = REPLACE(@inboundQuery, ';', '') -- causes problems if we don't 

remove 

 

 -- determine the shard first 

 IF @inboundQuery LIKE ('%rCaseNumber%')  

 OR @inboundQuery LIKE ('%rIUCR%')  

 OR @inboundQuery LIKE ('%rPrimaryType%')  

 OR @inboundQuery LIKE ('%rDescription%')  
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 OR @inboundQuery LIKE ('%rArrest%')  

 OR @inboundQuery LIKE ('%rDomestic%')  

 OR @inboundQuery LIKE ('%rFBICode%')  

 OR @inboundQuery LIKE ('%rUpdatedOn%')  

 SET @typeShardFlag = 1  

 IF @inboundQuery LIKE ('%rBlock%')  

 OR @inboundQuery LIKE ('%rBeat%')  

 OR @inboundQuery LIKE ('%rDistrict%')  

 OR @inboundQuery LIKE ('%rWard%')  

 OR @inboundQuery LIKE ('%rCommunityArea%')  

 OR @inboundQuery LIKE ('%rxCoordinate%')  

 OR @inboundQuery LIKE ('%ryCoordinate%')  

 OR @inboundQuery LIKE ('%rLatitude%')  

 OR @inboundQuery LIKE ('%rLongitude%')  

 OR @inboundQuery LIKE ('%rLocation%')  

 SET @locationShardFlag = 1  

 

 -- now determine the partition, if we can  

 -- if rDate is present as a predicate in the inbound query, check the median point  

 -- this will tell us if we can use partition alpha or beta  

 -- no rDate = both partitions  

 IF @inboundQuery LIKE ('%WHERE%rDate%')  

 BEGIN  

  SET @rDateCount = ( SELECT COUNT(*) from dbo.chicagoBase ) 

  SET @medianDate = (  

   SELECT rDate FROM ( 

    SELECT ROW_NUMBER() OVER ( ORDER BY rDate ASC ) [rid], 

rDate  

    FROM dbo.chicagoBase ) median  

   WHERE rid = FLOOR(@rDateCount / 2) )  

   

  -- parse out the date from the inbound query string 

  -- bit delicate, this 

  SET @stringBash = SUBSTRING(@inboundQuery, 

PATINDEX('%WHERE%',@inboundQuery), 1000)  

  SET @stringBash = SUBSTRING(@stringBash, PATINDEX('%rDate[<>=! ][1-2][0-

9][0-9][0-9]%', @stringBash), 38)  

  SET @stringBash = REPLACE(@stringBash, '''', '')  

  SET @stringBash = LTRIM(RTRIM(@stringBash))  

  SET @stringBash = RIGHT(@stringBash, 19) 

  IF  ISDATE(@stringBash) = 1 

  BEGIN 

   SET @rDate = CAST(@stringBash AS DATETIME) 

   IF  @rDate <= @medianDate 

    SET @alphaPartitionFlag = 1  

   IF @rDate > @medianDate  

    SET @betaPartitionFlag = 1 

  END  

 END 

 

 IF @inboundQuery NOT LIKE ('%WHERE%rDate%') 

 BEGIN  

  SET @alphaPartitionFlag = 1  

  SET @betaPartitionFlag = 1 

 END  

 

 -- now glue together a 4-table query based on flag status   

 --0101 -- location shard, beta partition - no join, no union  

 --0110 -- location shard, alpha partition - no join, no union  

 --0111 -- location shard, both partitions - no join, union all 

 --1001 -- type shard, beta partition - no join, no union  

 --1010 -- type shard, alpha partition - no join, no union  

 --1011 -- type shard, both partitions - no join, union all  

 --1101 -- both shards, beta partition - join on id, no union  
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 --1110 -- both shards, alpha partition - join on id, no union  

 --1111 -- all shards and partitions - join on id, union all  

 

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 0 AND 

@betaPartitionFlag = 1 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeLocationBeta') 

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 0 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeLocationAlpha') 

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 1 

 BEGIN 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeLocationAlpha') 

  SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +  

   REPLACE(@outboundQuery, 'chicagoCrimeLocationAlpha', 

'chicagoCrimeLocationBeta')  

 END  

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 0 AND 

@betaPartitionFlag = 1 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeTypeBeta') 

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 0 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeTypeAlpha') 

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 1 

 BEGIN 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase', 

'chicagoCrimeTypeAlpha') 

  SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +  

   REPLACE(@outboundQuery, 'chicagoCrimeTypeAlpha', 

'chicagoCrimeTypeBeta')  

 END  

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 0 AND 

@betaPartitionFlag = 1 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',  

  'chicagoCrimeTypeBeta a INNER JOIN chicagoCrimeLocationBeta b ON a.rid = 

b.rid') 

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 0 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',  

  'chicagoCrimeTypeAlpha a INNER JOIN chicagoCrimeLocationAlpha b ON a.rid = 

b.rid') 

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND 

@betaPartitionFlag = 1 

 BEGIN 

  SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',  

  'chicagoCrimeTypeBeta a INNER JOIN chicagoCrimeLocationBeta b ON a.rid = 

b.rid')  

  SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +  

   REPLACE(@outboundQuery, 'chicagoCrimeTypeBeta a INNER JOIN 

chicagoCrimeLocationBeta b ON a.rid = b.rid', 

   'chicagoCrimeLocationBeta a INNER JOIN chicagoCrimeLocationBeta b 

ON a.rid = b.rid')  

 END  

  

 -- DEAL WITH THE WHERES, APPEARING EACH SIDE OF THE UNION ALLS 

 

 -- set up outputs table 

 INSERT INTO @outputs 
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  SELECT @inboundQuery, @outboundQuery 

 RETURN 

END  

 

 

 

Code Listing 9:  Example call to generate random SQL queries 

SET NOCOUNT ON 

DECLARE @loopCounter SMALLINT = 1000 

DECLARE @results TABLE ( stmt VARCHAR(1000) )  

WHILE @loopCounter > 0 BEGIN  

 INSERT INTO @results  

  EXEC dbo.chicagoQueryGenerator 

 SET @loopCounter -= 1 

END  

 

DECLARE @allresults TABLE ( stmt VARCHAR(1000), alt VARCHAR(1000) )  

INSERT INTO @allresults  

 SELECT r.stmt, a.outboundQuery 

 FROM @results r  

 CROSS APPLY dbo.chicagoQueryTransformer (r.stmt) a  

 

 

SELECT ROW_NUMBER() OVER ( ORDER BY ( SELECT NULL ) ) [rid], stmt, alt FROM @allresults 

 

 

 

Code Listing 10:  Testing the similarity scoring mechanism 

testOutcomes = []; 

 

sqlQueryA = "SELECT A.x, B.x FROM A INNER JOIN B ON A.x = B.x;" 

sqlQueryB = "SELECT A.x, B.x FROM A INNER JOIN B ON A.x = B.x;" 

similarity = main(sqlQueryA, sqlQueryB); 

testOutcomes.append(["Set 1", similarity]); 

 

sqlQueryA = "SELECT A.x, B.y FROM B INNER JOIN A ON A.z = B.z;"  

sqlQueryB = "SELECT A.x, B.z FROM B INNER JOIN A ON A.z = B.z;"  

similarity = main(sqlQueryA, sqlQueryB); 

testOutcomes.append(["Set 2", similarity]); 

 

sqlQueryA = "SELECT A.x, A.y, A.z FROM A INNER JOIN B ON A.y = B.y;" 

sqlQueryB = "SELECT B.x FROM A INNER JOIN B ON A.y = B.y WHERE A.x = 10;" 

similarity = main(sqlQueryA, sqlQueryB); 

testOutcomes.append(["Set 3", similarity]); 

 

sqlQueryA = "SELECT A.x FROM A INNER JOIN B ON A.x = B.x WHERE B.y > 100;" 

sqlQueryB = "SELECT B.y FROM A INNER JOIN B ON A.z = B.z WHERE A.z = 0;" 

similarity = main(sqlQueryA, sqlQueryB); 

testOutcomes.append(["Set 4", similarity]); 

 

sqlQueryA = "SELECT A.x FROM A INNER JOIN B ON A.x = B.x WHERE A.x = 10;" 

sqlQueryB = "SELECT C.x FROM C INNER JOIN D ON C.z = D.z WHERE D.z > 50;" 

similarity = main(sqlQueryA, sqlQueryB); 

testOutcomes.append(["Set 5", similarity]); 

 

for i in testOutcomes: 

  print(i); 
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Code Listing 11:  Testing syntactic and functional validity 

SET NOCOUNT ON 

DECLARE @loopCounter SMALLINT = 100 

DECLARE @results TABLE ( stmt VARCHAR(1000) )  

WHILE @loopCounter > 0 BEGIN  

 INSERT INTO @results  

  EXEC dbo.chicagoQueryGenerator 

 SET @loopCounter -= 1 

END  

 

DECLARE @allresults TABLE ( stmt VARCHAR(1000), alt VARCHAR(1000) )  

INSERT INTO @allresults  

 SELECT r.stmt, a.outboundQuery 

 FROM @results r  

 CROSS APPLY dbo.chicagoQueryTransformer (r.stmt) a  

 

DROP TABLE IF EXISTS #finalresults  

CREATE TABLE #finalresults ( rid INT, stmt VARCHAR(1000), alt VARCHAR(1000), good BIT ) 

 

INSERT INTO #finalresults 

 SELECT ROW_NUMBER() OVER ( ORDER BY ( SELECT NULL ) ) [rid],  

   stmt, alt, NULL  

 FROM @allresults  

 

DECLARE cur_ForEachQueryPair CURSOR LOCAL FAST_FORWARD FOR  

 SELECT f.rid, f.stmt, f.alt  

 FROM #finalresults f  

 WHERE f.alt IS NOT NULL  

 ORDER BY rid ASC  

DECLARE @thisRid INT, @thisStmt NVARCHAR(1000), @thisAlt NVARCHAR(1000)  

DECLARE @badFlag BIT = 0 

OPEN cur_ForEachQueryPair  

FETCH NEXT FROM cur_ForEachQueryPair INTO @thisRid, @thisStmt, @thisAlt 

WHILE @@FETCH_STATUS = 0  

BEGIN  

 SET @badFlag = 0 

 PRINT @thisStmt  

 PRINT @thisAlt 

 BEGIN TRY  

  EXEC sp_executesql @thisStmt  

  PRINT 'Good' 

 END TRY  

 BEGIN CATCH  

  SET @badFlag = 1 

 END CATCH  

 BEGIN TRY  

  EXEC sp_executesql @thisAlt 

  PRINT 'Good' 

 END TRY  

 BEGIN CATCH  

  SET @badFlag = 1 

  PRINT 'Bad' 

 END CATCH  

 UPDATE #finalResults  

 SET  good =  

  ( SELECT CASE WHEN @badFlag = 0 THEN 1 ELSE 0 END ) 

 WHERE rid = @thisRid  

 FETCH NEXT FROM cur_ForEachQueryPair INTO @thisRid, @thisStmt, @thisAlt 

END  

CLOSE cur_ForEachQueryPair  

DEALLOCATE cur_ForEachQueryPair  
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SELECT good, COUNT(*)  

FROM #finalresults f  

GROUP BY good 
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Appendix E:  Dynamic schemas – algorithms and code 
 

This material supplements the presentation of the implementation of the dynamic schema 

redefinition process described in Chapter 8. 

 

E.1 Implementation of the query parser component 

 

Algorithm: 

Algorithm name: Query parser  

Inputs:  Query plan cache from RDBMS  

Outputs: Progress log; global temporary tables ##cs and ##q  

Notes: Progress logging takes place throughout and is omitted for clarity. 

 

Let ##cs be a global temporary table containing cached query statistics. 

Insert into ##cs the following values from the query cache, per query: 

----|Plan handle,  

----|Statement start offset,  

----|Statement end offset,  

----|Last logical reads,  

----|Last elapsed time,  

----|Query plan 

 

Let ##q be a global temporary table containing derivatives (D) of query plan cache 

details. 

Insert into ##q the following values from the query cache, per query: 

----|Plan handle,  

----|Query text,  

----|(D)Selection components of the query text,  

----|(D)Non-selection components of the query text occurring after the selection 

components,  

----|Query use count 

 

Using the query plan cache, update ##q with the latest use counts per query: 

----|Joining on plan handle: 

----|----|Update use counts in ##q with metric from plan cache.  

 

For each row in ##q: 

----|Where the query text is NOT LIKE ('%CREATE%PROCEDURE%') AND  

----|Where the query text is NOT LIKE ('%CREATE%VIEW%') 

----|----|Derive the attributes, data sources and predicates into separate columns in 

##q: 

----|----|----|Set ##q.attributes to a derived substring of ##q.attributes: 

----|----|----|----|Set ##q.attributes to substring of ##q.attributes from char 1 to: 

----|----|----|----|----|CASE WHEN ##q.attributes LIKE ('%FROM%') 

----|----|----|----|----|----|Then from 1 to the beginning of the string 'FROM' 

----|----|----|----|----|----|Else from 1 to 8000 

----|----|----|Set ##q.data_sources to a derived substring of ##q.data_sources: 

----|----|----|----|Set ##q.data_sources to substring of ##q.data_sources from char 1 to: 

----|----|----|----|----|CASE WHEN ##q.data_sources LIKE ('%WHERE%') 

----|----|----|----|----|----|Then from 1 to the beginning of the string 'WHERE' 

----|----|----|----|----|----|Else from 1 to 8000 

----|----|----|If ##q.predicates NOT LIKE the string ('%WHERE%') 

----|----|----|----|Then set ##q.predicates to an empty string  

----|----|----|----|Else nothing 

 

For all rows in ##q: 

----|Where the date_updated is not null AND  
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----|Where the date_updated is older than 1 day from today's date 

----|----|Delete the row. 

 

 

Code Listing: 

SET NOCOUNT ON  

DECLARE @LogMessage VARCHAR(MAX) 

 

-- Dump the cached stats for later use - to work around cache flush  

INSERT INTO ##cs ( plan_handle, statement_start_offset, statement_end_offset,  

     last_logical_reads, last_elapsed_time, query_plan )   

 SELECT s.plan_handle, s.statement_start_offset, s.statement_end_offset,  

   s.last_logical_reads, s.last_elapsed_time, q.query_plan 

 FROM sys.dm_exec_query_stats s  

 CROSS APPLY sys.dm_exec_text_query_plan (s.plan_handle, 

s.statement_start_offset, s.statement_end_offset) q 

 

-- Scan the plan cache for new queries 

INSERT INTO ##q (plan_handle, query_text, attributes, datasources, predicates, usecounts) 

 SELECT cp.plan_handle, t.[text],  

   SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1), 8000),  

   SUBSTRING((SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1), 

8000)), CHARINDEX('FROM', SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1), 8000), 

1), 8000), 

   SUBSTRING(SUBSTRING((SUBSTRING(t.[text], CHARINDEX('SELECT', 

t.[text], 1), 8000)), CHARINDEX('FROM', SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 

1), 8000), 1), 8000), CHARINDEX('WHERE', SUBSTRING((SUBSTRING(t.[text], 

CHARINDEX('SELECT', t.[text], 1), 8000)), CHARINDEX('FROM', SUBSTRING(t.[text], 

CHARINDEX('SELECT', t.[text], 1), 8000), 1), 8000), 1), 8000),  

   cp.usecounts  

 FROM sys.dm_exec_cached_plans cp  

 OUTER APPLY sys.dm_exec_sql_text (cp.plan_handle) t  

 LEFT JOIN ##q q ON cp.plan_handle = q.plan_handle  

 WHERE q.plan_handle IS NULL  

 AND  t.[text] NOT LIKE ('%INSERT%')  

 AND  t.[text] NOT LIKE ('%UPDATE%')  

 AND  t.[text] NOT LIKE ('%DELETE%') 

 AND  t.[text] NOT LIKE ('%tpcc_queries%') 

  

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows into ##q'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'QueryParser',  

  @CallingCode = 'Scan the plan cache for new queries',  

  @LogMessage = @LogMessage   

 

-- Update the queries table with the most current usecounts from the plan cache  

UPDATE q 

SET  q.usecounts = cp.usecounts,  

  q.date_updated = GETDATE()  

FROM ##q q  

INNER JOIN sys.dm_exec_cached_plans cp ON q.plan_handle = cp.plan_handle  

 

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows in ##q'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'QueryParser',  

  @CallingCode = 'Update the queries table with the most current usecounts 

from the plan cache',  

  @LogMessage = @LogMessage   

 

-- Separate out the top-level attributes, data sources and predicates into separate 

columns. 
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-- Where this is a CREATE PROCEDURE/VIEW statement (i.e. executing an SP/view), start 

from the end of BEGIN. 

UPDATE q 

SET  q.attributes = SUBSTRING(q.attributes, 1, CASE WHEN q.attributes LIKE 

('%FROM%') THEN CHARINDEX('FROM', q.attributes, 1) ELSE 8000 END - 1),  

  q.datasources = SUBSTRING(q.datasources, 1, CASE WHEN q.datasources LIKE 

('%WHERE%') THEN CHARINDEX('WHERE', q.datasources, 1) ELSE 8000 END - 1), 

  q.predicates = CASE WHEN q.predicates NOT LIKE ('%WHERE%') THEN '' ELSE 

q.predicates END  

FROM ##q q  

WHERE q.query_text NOT LIKE ('%CREATE%PROCEDURE%')  

AND  q.query_text NOT LIKE ('%CREATE%VIEW%')  

 

UPDATE q 

SET  q.attributes = SUBSTRING(q.attributes, CHARINDEX('BEGIN', q.attributes, 

1) + 5, CASE WHEN q.attributes LIKE ('%FROM%') THEN CHARINDEX('FROM', q.attributes, 1) 

ELSE 8000 END - 1),  

  q.datasources = SUBSTRING(q.datasources, 1, CASE WHEN q.datasources LIKE 

('%WHERE%') THEN CHARINDEX('WHERE', q.datasources, 1) ELSE 8000 END - 1), 

  q.predicates = CASE WHEN q.predicates NOT LIKE ('%WHERE%') THEN '' ELSE 

q.predicates END  

FROM ##q q  

WHERE q.query_text LIKE ('%CREATE%PROCEDURE%')  

OR  q.query_text LIKE ('%CREATE%VIEW%')  

 

 

-- Delete entries in ##q that haven't been updated in 24 hours. 

-- This cascades into the other tables through separate scripts. 

DELETE q  

FROM ##q q  

WHERE q.date_updated IS NOT NULL  

AND  q.date_updated < DATEADD(DAY, -1, GETDATE()) 

 

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows from ##q'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'QueryParser',  

  @CallingCode = 'Delete entries in ##q that haven''t been updated in 24 

hours.',  

  @LogMessage = @LogMessage   

 

 

E.2 Temporary table creation 

 

No algorithm supplied (none required). 

 

Code Listing: 

 

-- Variant to create if not exists (for SQL Agent job) 

 

IF NOT EXISTS ( SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##q%') )  

BEGIN 

 CREATE TABLE ##q  (  

     plan_handle VARBINARY(8000) NOT NULL,  

    date_created DATETIME DEFAULT GETDATE() NOT NULL,  

    date_updated DATETIME DEFAULT GETDATE(), 

    usecounts BIGINT NOT NULL,  

    query_text VARCHAR(MAX),  

    attributes VARCHAR(MAX),  

    datasources VARCHAR(MAX),  
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    predicates VARCHAR(MAX),  

    suitable_candidate BIT,  

    grouped_predicates VARCHAR(MAX),  

    CONSTRAINT pk_q_plan_handle PRIMARY KEY (plan_handle) 

    ) 

 EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateGlobalTemporaryTables',  

  @CallingCode = 'CREATE TABLE ##q',  

  @LogMessage = 'Created table.'   

 

END  

 

IF NOT EXISTS ( SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##q_mv_link%') )  

BEGIN 

 CREATE TABLE ##q_mv_link (  

  mv_link_id INT IDENTITY(1,1) NOT NULL,  

  plan_handle VARBINARY(8000),  

  mv_id INT,  

  new_query_text VARCHAR(MAX),  

  new_plan_handle VARBINARY(8000),  

  date_created DATETIME DEFAULT GETDATE() NOT NULL,  

  date_updated DATETIME DEFAULT GETDATE(),  

  original_query_cost NUMERIC(24,5),  

  original_query_read_count BIGINT,  

  original_query_rows BIGINT,  

  original_query_columns BIGINT,  

  original_query_data_points AS original_query_rows * original_query_columns,  

  original_query_efficiency NUMERIC(24,5),  

  new_query_cost NUMERIC(24,5),  

  new_query_read_count BIGINT,  

  new_query_rows BIGINT,  

  new_query_columns BIGINT,  

  new_query_data_points AS new_query_rows * new_query_columns,  

  new_query_efficiency NUMERIC(24,5),  

  cost_delta NUMERIC(24,5), 

  efficiency_delta NUMERIC(24,5),  

  CONSTRAINT mv_link_id PRIMARY KEY (mv_link_id), 

   CONSTRAINT fk_plan_handle FOREIGN KEY (plan_handle)  

    REFERENCES ##q (plan_handle),  

  CONSTRAINT fk_mv_id FOREIGN KEY (mv_id) REFERENCES ##mv (mv_id) 

  ) 

 EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateGlobalTemporaryTables',  

  @CallingCode = 'CREATE TABLE ##q_mv_link',  

  @LogMessage = 'Created table.'   

 

END 

 

IF NOT EXISTS ( SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##mv%') )   

BEGIN 

 CREATE TABLE ##mv ( 

   mv_id INT IDENTITY(1,1) PRIMARY KEY NOT NULL,  

   associated_view_definition VARCHAR(8000),  

   attributes_datasources_predicates  

    AS SUBSTRING(associated_view_definition,  

     CHARINDEX('AS', associated_view_definition, 1) + 2, 

LEN(associated_view_definition)),  

   mv_implemented BIT,  

   has_indexed_view BIT 

   ) 

 EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateGlobalTemporaryTables',  

  @CallingCode = 'CREATE TABLE ##mv',  

  @LogMessage = 'Created table.'  
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END 

 

IF NOT EXISTS ( SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##b%') )  

BEGIN 

 CREATE TABLE ##b (  

  query VARCHAR(8000) )  

 

 EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateGlobalTemporaryTables',  

  @CallingCode = 'CREATE TABLE ##b',  

  @LogMessage = 'Created table.'   

 

END 

 

IF NOT EXISTS ( SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##cs%') )  

BEGIN 

 CREATE TABLE ##cs (  

  plan_handle VARBINARY(64),  

  statement_start_offset INT,  

  statement_end_offset INT,  

  last_logical_reads BIGINT, 

  last_elapsed_time BIGINT, 

  query_plan NVARCHAR(MAX) 

  )  

 

 EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateGlobalTemporaryTables',  

  @CallingCode = 'CREATE TABLE ##cs',  

  @LogMessage = 'Created table.'   

 

END 

GO 

 

 

 

E.3 Implementation of the analyse M Vs/use metadata component 

 

Algorithm:  

Algorithm name:  Create and destroy MVs  

Inputs:  Global temporary tables ##q, ##mv, ##mv_link and local temporary table #g 

Outputs: Local temporary table #g, altered entries in tables ##q, ##mv, ##mv_link, plus 

MVs to DB 

Notes: Loops are differentiated from set-based operations by using For each/For all 

syntax. 

 

Remove own queries from global temporary table ##q: 

----|Delete rows from ##q where: 

----|----|Query text LIKE ('%##q%') OR  

----|----|Query text LIKE ('%##mv%') OR  

----|----|Query text LIKE ('%#g ) OR  

----|----|Query text LIKE ('%tpcc_queries%')  

 

Remove queries with CROSS JOINs from scope: 

----|Delete rows from ##q where: 

----|----|Query text includes the string 'CROSS JOIN'  

 

Remove MVs no longer present in ##q together with their table entries: 

----|Set @count = 0 
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----|For each query q in table ##mv, anti-joining on ##q: 

----|----|Replace 'CREATE' with 'DROP', resulting in derived query D(q) 

----|----|Replace CR/LF line endings with blank strings 

----|----|Increment @count  

----|----|Execute the derived query D(q)  

----|Delete all rows from ##mv where:  

----|----|There exists companion rows in ##mv_link, joining on plan_handle AND  

----|----|There does not exist companion rows in ##q, anti-joining on plan handle. 

----|Delete all rows from ##mv_link where:  

----|----|There do not exist companion rows in ##mv, anti-joining on plan handle.  

----|For all rows in ##mv_link:  

----|----|Get the max mv_link_id identifier grouped by plan handle and mv_id identifier  

----|----|Delete all rows from ##mv_link not in the resulting query set.  

----| 

Begin parsing/MV creation process: 

----|Set variable @c = 0----| 

----|Remove nested queries from scope:  

----|----|For each row in a subset of table ##q including the following columns: 

----|----|Plan handle,  

----|----|Use counts,  

----|----|Query text,  

----|----|Attributes,  

----|----|Data sources,  

----|----|Predicates----| 

----|----| 

----|----|Do: 

----|----|----|If attributes substring of the row in position 7 to 8000 LIKE '%SELECT%'  

----|----|----|----|OR attributes substring of the row in position 7 to 8000 LIKE '%FROM%' 

----|----|----|----|OR attributes substring of the row in position 7 to 8000 LIKE 

'%WHERE%' 

----|----|----|Then  

----|----|----|----|Set suitable_candidate attribute of ##q = 0  

----|----|----|If data sources substring of the row in position 5 to 8000 LIKE '%SELECT%'  

----|----|----|----|OR data sources substring of the row in position 5 to 8000 LIKE 

'%FROM%' 

----|----|----|----|OR data sources substring of the row in position 5 to 8000 LIKE 

'%WHERE%' 

----|----|----|Then  

----|----|----|----|Set suitable_candidate attribute of ##q = 0  

----|----|----|If predicates substring of the row in position 6 to 8000 LIKE '%SELECT%'  

----|----|----|----|OR predicates substring of the row in position 6 to 8000 LIKE '%FROM%' 

----|----|----|----|OR predicates substring of the row in position 6 to 8000 LIKE 

'%WHERE%' 

----|----|----|Then  

----|----|----|----|Set suitable_candidate attribute of ##q = 0  

----|----| 

----|----|Remove nested system functions from scope: 

----|----|----|If data sources column LIKE ('%(%)%')  

----|----|----|Then set suitable_candidate attribute of ##q = 0 

----|----| 

----|----|Check data sources exist and remove from scope if none: 

----|----|----|If data sources column length = 0 or null: 

----|----|----|Then set suitable_candidate attribute of ##q = 0 

----|----| 

----|----|Group identical queries with differing predicates:  

----|----|----|If there exist rows in ##q with identical attributes to this attribute AND  

----|----|----|If there exist rows in ##q with identical data sources to this data source 

AND  

----|----|----|If there exist rows in ##q with different predicates to this predicate  

----|----|----|Then  

----|----|----|----|Compile this predicate with delimiter | to existing predicates  

----|----|----|----|Update ##q with new predicate value  

----|----| 

----|----|If the query at hand is not marked as suitable, mark as suitable:  
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----|----|----|For the first query in ##q with the same plan handle as the one in hand AND  

----|----|----|Where this query has suitable_candidate = 0  

----|----|----|----|Update ##q and set suitable_candidate = 1 for this plan handle. 

 

Define empty variable @predicateList. 

 

For all distinct data sources in ##q: 

----|Where predicates exist AND  

----|Where suitable_candidate = 1 AND  

----|Where predicates are not grouped (grouped_predicates is null)  

----|Do: 

----|----|For all distinct predicates in ##q:  

----|----|----|Where the data source matches the data source at hand AND  

----|----|----|Suitable candidate = 1 AND  

----|----|----|The predicate is not empty 

----|----|Do: 

----|----|----|If @predicateList is empty  

----|----|----|Then set @predicateList = the distinct predicate at hand  

----|----|----|Else append a comma (,) and the distinct predicate at hand to 

@predicateList  

----|----| 

----|----|Set @predicateList = grouped_predicates from ##q  

----|----|Where ##q.data_source matches the data source at hand  

----|----|And the predicate exists  

----|----|And suitable_candidate = 1  

----|----| 

----|Set @predicateList to an empty string  

 

Remove all queries against system databases from scope: 

----|Delete from ##q where: 

----|----|Query text LIKE(<name of system database(s) as applicable>) 

----|----|*Repeat as necessary  

----|----| 

If local temporary table #g exists: 

----|Drop table #g  

 

Let #g be a local temporary table with columns described as:  

----|Plan handle,  

----|Attributes,  

----|Original attributes,  

----|Data sources,  

----|Predicates,  

----|Original predicates,  

 

Populate #g with all entries from ##q, mapping as follows: 

----|(#g)Plan handle <- (##q) Plan handle,  

----|(#g)Attributes <- (##q) Attributes,  

----|(#g)Original attributes <- (##q) Attributes,  

----|(#g)Data sources <- (##q) Data sources,  

----|(#g)Predicates <- (##q) Predicates,  

----|(#g)Original predicates <- (##q) Predicates 

----|Where: 

----|----|suitable_candidate = 1  

 

Group queries by same data sources and attributes: 

----|Declare empty variable @thisAttributesSplit 

----|Declare empty variable @thisAttributes  

----|For each distinct data source in #g: 

----|----|Create comma-separated list of all #g.attributes, set @thisAttributes to this 

list.  

----|Deduplicate @thisAttributes: 

----|----|For each comma-separated item in @thisAttributes,  

----|----|----|Identify first instance of item  

----|----|----|Remove all other identical items 
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----|----|Set @thisAttributesSplit to the new deduplicated comma-separated list.  

----|----|Update #g with attributes = @thisAttributesSplit for the distinct data source at 

hand. 

 

For both attribute and original_attribute in #g: 

----|Do: 

----|Alias each attribute with its own three-part reference: 

----|----|For each plan handle, attributes in #g: 

----|----|----|For each distinct item in attributes in #g: 

----|----|----|----|Replace the word 'SELECT' with an empty string  

----|----|----|----|Replace [, ], (, ) characters with an empty string  

----|----|----|----|Trim the item to all leftmost characters - 1  

----|----|----|----|Add [ ] to the outside of the item  

----|----|----|Write all items back to the attributes column in #g, CSV separated  

 

For all rows in #g: 

----|If data source is not prepended with 'dbo' AND  

----|If data source is not a two-part name (contains .)  

----|Then update #g, prepending 'dbo.' to data source.  

----| 

For all rows in #g where query_text contains 'JOIN': 

----|If data source is not prepended with 'dbo' AND  

----|If data source is not a two-part name (contains .)  

----|Then update #g, prepending 'JOIN dbo.' to data source.  

----| 

For all rows in #g:  

----|Replace 'dbo. ' substrings in the data sources column with the string 'dbo.' 

----| 

For each distinct datasource in #g:  

----|Replace all AND with OR (for maximal coverage of conditions)  

----|Deduplicate predicates (use same pattern as for data sources)  

----| 

For all rows in #g:  

----|Replace 'WHERE OR' substrings in the predicates column with the string 'OR WHERE'  

 

For all rows in #g: 

----|Insert into table ##mv as associated view definition: 

----|----|String 'CREATE VIEW <<NEWID>> WITH SCHEMABINDING AS ' (or RDBMS equivalent) PLUS  

----|----|g.attributes + ' ' + g.data_sources + ' ' + g.predicates  

----|Where: 

----|----|The view does not already exist in ##mv 

----|----| 

Deduplicate ##mv:  

----|For all rows, fetch max mv_id, grouping on all non-key columns  

----|Delete all rows from ##mv not in this set.  

----| 

For all rows in ##mv: 

----|Update string <<NEWID>> in attributes with NEWID() system function output or 

equivalent.  

----| 

(errata): Fix codepage issues: 

----|Replace '&amp%' patterns with equivalent <, >, <=, >= primitives in ##mv columns.  

 

For all rows in ##mv: 

----|Insert into ##mv_link: 

----|----|mv.mv_id, g.plan_handle, PLUS  

----|----|(g.original_attributes, substring(13 to 37) mv.associated_view_definition PLUS  

----|----|g.original_predicates) PLUS  

----|----|Current date/time.  

----|----|Where:  

----|----|----|Link does not currently exist matching this AVD and mv_id.  

 

(errata): Fix double dbo issue  

----|Replace 'dbo.dbo' pattern with 'dbo' in all associated_view_definitions 
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For all rows in ##mv_link: 

----|Set original_query_columns to substrings of query_text, reflecting attributes.  

 

For each MV, check MV parses and executes correctly: 

----|For all rows in ##mv  

----|Where mv_implemented = 0: 

----|----|Construct dynamic CREATE VIEW statement  

----|----|Try:  

----|----|----|Execute statement  

----|----|----|Update mv_implemented = 1 in ##mv  

----|----|Catch: 

----|----|----|Update mv_implemented = 0 in ##mv  

----|----|----| 

Materialise the views with clustered indexes: 

----|For all rows in ##mv 

----|Where has_indexed_view = 0 

----|Do: 

----|----|Construct string CREATE UNIQUE CLUSTERED INDEX (or equivalent) PLUS  

----|----|View name (replacing '-' string with an empty string) PLUS  

----|----|'ON' + first column of materialised view.  

----| 

----|----|Try:  

----|----|----|Execute the string.  

----|----|----|Update ##mv with has_indexed_view = 1  

----|----|Catch: 

----|----|----|Construct DROP VIEW statement for view.  

----|----|----|Execute DROP VIEW statement.  

----|----|----|Construct CREATE TABLE statement replacing view.  

----|----|----|Try: 

----|----|----|----|Execute CREATE TABLE statement.  

----|----|----|----|Update has_indexed_view = 1  

----|----|----|Catch: 

----|----|----|----|Do nothing.  

 

For all rows in ##mv_link: 

----|Add [ ] brackets to predicates in column predicates to avoid parsing issues.  

----| 

(errata):  String replacements of ##mv_link.new_query_text to fix XML codepage issues. 

 

 

Code Listing: 

 

USE tpcc  

SET NOCOUNT ON  

SET QUOTED_IDENTIFIER ON 

 

DECLARE @count INT = 0 

DECLARE @LogMessage VARCHAR(MAX) 

 

-- Get the original query cost, the original query read count and original query rows.  

Update ##q_mv_link. 

DECLARE cur_ForEachQuery CURSOR LOCAL FAST_FORWARD FOR  

 SELECT link.mv_link_id  

 FROM ##q q  

 INNER JOIN ##q_mv_link link ON q.plan_handle = link.plan_handle 

 INNER JOIN ##mv mv ON link.mv_id = mv.mv_id  

-- WHERE mv.mv_implemented = 1  

DECLARE @thisLinkID INT, @thisEstimatedCost NUMERIC(26,10) 

DECLARE @results TABLE (  

 plan_handle VARBINARY(8000),  

 last_logical_reads BIGINT,  
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 estimated_cost NUMERIC(26,10),  

 estimated_rows FLOAT )  

 

OPEN cur_ForEachQuery  

FETCH NEXT FROM cur_ForEachQuery INTO @thisLinkID  

WHILE @@FETCH_STATUS = 0  

BEGIN  

 DELETE FROM @results  

 ;WITH XMLNAMESPACES ( DEFAULT 

N'http://schemas.microsoft.com/sqlserver/2004/07/showplan' ),  

 PlanText AS ( SELECT CAST(cs.query_plan AS XML) AS QueryPlan,  

       cs.last_logical_reads, 

       cs.plan_handle  

     FROM ##cs cs 

     INNER JOIN ##q_mv_link link ON cs.plan_handle = 

link.plan_handle  

     WHERE link.mv_link_id = @thisLinkID  

    ),  

 PlanElements AS (  

     SELECT PlanText.plan_handle, 

      PlanText.QueryPlan, 

      PlanText.last_logical_reads, 

     

 RelOp.pln.value(N'@EstimatedTotalSubtreeCost', N'float') AS EstimatedCost, 

 RelOp.pln.value(N'@EstimateRows', N'float') AS EstimateRows, 

 RelOp.pln.value(N'@NodeId', N'integer') AS NodeId 

     FROM PlanText  

     CROSS APPLY 

PlanText.QueryPlan.nodes(N'//RelOp')RelOp(pln)  

     ) 

  

 INSERT INTO @results ( plan_handle, last_logical_reads, estimated_cost, 

estimated_rows ) 

  SELECT e.plan_handle, e.last_logical_reads, e.EstimatedCost, 

e.EstimateRows 

  FROM PlanElements e  

  WHERE e.NodeId = 0 

 

 BEGIN TRY  

  UPDATE link  

  SET  link.original_query_cost = CAST(r.estimated_cost AS 

NUMERIC(24,5)),  

    link.original_query_rows = r.estimated_rows,  

    link.original_query_read_count = r.last_logical_reads 

  FROM ##q_mv_link link  

  INNER JOIN @results r ON link.plan_handle = r.plan_handle  

  WHERE link.mv_link_id = @thisLinkID  

  AND  link.original_query_cost IS NULL  

-- to prevent overwriting previously-captured costs  

  OR  link.original_query_rows IS NULL    

 

  SET @count += @@ROWCOUNT  

 

 END TRY  

 BEGIN CATCH  

  PRINT 'Something went wrong updating the usage metadata.   

                      Dumping @result to console...'  

  SELECT * FROM @results  

 END CATCH 

 

 FETCH NEXT FROM cur_ForEachQuery INTO @thisLinkID  

END 

CLOSE cur_ForEachQuery  

DEALLOCATE cur_ForEachQuery  
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SET @LogMessage = 'Updated a total of ' + CAST(@count AS VARCHAR(15)) + ' entries in 

##q_mv_link'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'AnalyseMVUseMetadata',  

  @CallingCode = 'Update query performance metadata',  

  @LogMessage = @LogMessage   

 

 

-- For each new_query_text in ##q_mv_link where the original costs have been obtained, 

execute the new query  

-- then using the subsequent plan handle, query the DB stats to get the cost, rows, reads 

required and calculate columns. 

DECLARE cur_ForEachNewQuery CURSOR LOCAL FAST_FORWARD FOR  

 SELECT mv_link_id, new_query_text  

 FROM ##q_mv_link link  

 WHERE link.original_query_cost IS NOT NULL   

 AND  link.new_query_cost IS NULL  

DECLARE @thisMVLinkID INT, @thisNewQueryText NVARCHAR(MAX), @thisPlanHandle VARBINARY(MAX) 

DECLARE @d NVARCHAR(MAX) 

OPEN cur_ForEachNewQuery  

FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVLinkID, @thisNewQueryText  

WHILE @@FETCH_STATUS = 0  

BEGIN 

 BEGIN TRY  

  PRINT 'Attempting to execute new query, ##mv_link_id = ' + 

CAST(@thisMVLinkID AS VARCHAR(10)) + '...' 

  EXEC sp_executesql @thisNewQueryText   

  PRINT @thisNewQueryText 

  PRINT 'Executed query.' 

  -- get plan handle from cache 

  SET @d = @thisNewQueryText 

  exec sp_executesql @d  

  SELECT @thisPlanHandle = COALESCE(cp.plan_handle, cp.parent_plan_handle)  

  FROM sys.dm_exec_cached_plans cp 

  CROSS APPLY sys.dm_exec_sql_text(plan_handle) t  

  CROSS APPLY sys.dm_exec_query_plan(plan_handle) q 

  WHERE t.[text] = @thisNewQueryText 

 

  IF @thisPlanHandle IS NOT NULL  

  BEGIN  

   PRINT 'Found plan handle.' 

   DELETE FROM @results  

   ;WITH XMLNAMESPACES ( DEFAULT 

N'http://schemas.microsoft.com/sqlserver/2004/07/showplan' ),  

   PlanText AS ( SELECT CAST(q.query_plan AS XML) AS QueryPlan,  

       s.last_logical_reads, 

       s.plan_handle  

     FROM sys.dm_exec_query_stats s  

     CROSS APPLY sys.dm_exec_text_query_plan 

(s.plan_handle, s.statement_start_offset, s.statement_end_offset) q  

     WHERE s.plan_handle = @thisPlanHandle  

     ), 

   PlanElements AS (  

      SELECT PlanText.plan_handle, 

        PlanText.QueryPlan, 

        PlanText.last_logical_reads, 

       

 RelOp.pln.value(N'@EstimatedTotalSubtreeCost', N'float') AS EstimatedCost, 

       

 RelOp.pln.value(N'@EstimateRows', N'float') AS EstimateRows, 

        RelOp.pln.value(N'@NodeId', 

N'integer') AS NodeId 

      FROM PlanText  
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      CROSS APPLY 

PlanText.QueryPlan.nodes(N'//RelOp')RelOp(pln)  

      ) 

  

   INSERT INTO @results ( plan_handle, last_logical_reads, 

estimated_cost, estimated_rows ) 

    SELECT e.plan_handle, e.last_logical_reads, 

e.EstimatedCost, e.EstimateRows 

     FROM PlanElements e  

     WHERE e.NodeId = 0 

   IF @@ROWCOUNT > 0  

    PRINT 'Found query metadata.' 

   ELSE  

    PRINT 'Did NOT find query metadata.' 

  UPDATE link  

  SET  link.new_plan_handle = @thisPlanHandle, 

    link.new_query_cost = CAST(r.estimated_cost AS 

NUMERIC(24,5)),  

    link.new_query_rows = r.estimated_rows,  

    link.new_query_read_count = r.last_logical_reads 

  FROM ##q_mv_link link  

  INNER JOIN @results r ON @thisPlanHandle = r.plan_handle  

  WHERE link.mv_link_id = @thisMVLinkID  

 

  PRINT 'Updated ##q_mv_link table with ' + CAST(@@ROWCOUNT AS VARCHAR(10)) + 

' row.' 

  END  

 END TRY  

 BEGIN CATCH  

  PRINT ERROR_MESSAGE() 

 END CATCH  

 SET @thisPlanHandle = NULL  

 FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVLinkID, @thisNewQueryText  

END 

CLOSE cur_ForEachNewQuery 

DEALLOCATE cur_ForEachNewQuery  

 

-- Finally, calculate the query efficiencies and calculate the cost and efficiency deltas. 

-- Efficiency as rows over reads as per document. 

UPDATE link  

SET  link.original_query_efficiency =  

   CAST((CAST(link.original_query_rows AS FLOAT) /  

   CAST(CASE WHEN link.original_query_read_count = 0 THEN 1 ELSE 

link.original_query_read_count END AS FLOAT))  

   *100.0 AS NUMERIC(24,2)),  

  link.new_query_efficiency =  

   CAST((CAST(link.new_query_rows AS FLOAT) /  

   CAST(CASE WHEN link.new_query_read_count = 0 THEN 1 ELSE 

link.new_query_read_count END AS FLOAT))  

   *100.0 AS NUMERIC(24,2))  

FROM ##q_mv_link link  

WHERE original_query_rows IS NOT NULL  

AND  original_query_read_count IS NOT NULL  

AND  new_query_rows IS NOT NULL  

AND  new_query_read_count IS NOT NULL  

 

-- Cap off the efficiencies at 100% (for cases where fewer reads required than rows 

returned).  

UPDATE link  

SET  link.original_query_efficiency =  

   CASE WHEN original_query_efficiency > 100 THEN 100.0 ELSE 

original_query_efficiency END, 

  link.new_query_efficiency =  
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   CASE WHEN new_query_efficiency > 100 THEN 100.0 ELSE 

new_query_efficiency END 

FROM ##q_mv_link link  

 

UPDATE link  

SET  link.cost_delta = new_query_cost - original_query_cost,  

  link.efficiency_delta = new_query_efficiency - original_query_efficiency  

FROM ##q_mv_link link  

 

 

 

-- Destroy any MVs extant in the DB that aren't listed in the ##mv table  

DECLARE cur_ForEachView CURSOR LOCAL FAST_FORWARD FOR  

 SELECT v.name  

 FROM tpcc.sys.views v 

 LEFT JOIN ##mv mv  

 ON  v.[name] = 

LTRIM(RTRIM(REPLACE(REPLACE(LEFT(mv.associated_view_definition, 50), 'CREATE VIEW [', ''), 

']', ''))) 

 WHERE LTRIM(RTRIM(REPLACE(REPLACE(LEFT(mv.associated_view_definition, 50), 

'CREATE VIEW [', ''), ']', ''))) IS NULL  

DECLARE @thisView VARCHAR(255) 

DECLARE @dSQL NVARCHAR(MAX) 

SET @count = 0 

OPEN cur_ForEachView  

FETCH NEXT FROM cur_ForEachView INTO @thisView  

WHILE @@FETCH_STATUS = 0 

BEGIN 

 SET @dSQL = 'DROP VIEW [' + @thisView + ']'  

 BEGIN TRY  

  EXEC tpcc..sp_executesql @dSQL  

  SET @count += 1  

 END TRY 

 BEGIN CATCH 

 END CATCH 

 FETCH NEXT FROM cur_ForEachView INTO @thisView  

END 

CLOSE cur_ForEachView 

DEALLOCATE cur_ForEachView  

 

SET @LogMessage = 'Dropped ' + CAST(@count AS VARCHAR(15)) + ' MVs that no longer exist in 

##mv'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'AnalyseMVUseMetadata',  

  @CallingCode = 'Drop extant MVs',  

  @LogMessage = @LogMessage   
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E.4 Implementation of the create and destroy M Vs component 

 

Algorithm: 

 

Algorithm name:  Analyse MV / Use Metadata  

Inputs:  RDBMS query plan cache, ##mv, ##mv_link, ##q global temporary tables  

Outputs:  Updated performance info. in ##mv_link, dropped MVs in DB  

 

Declare a local temporary table @result with columns as follows: 

----|Plan handle,  

----|Last logical reads,  

----|Estimated cost,  

----|Estimated rows  

 

For each query present in ##mv/##mv_link joined on mv_id: 

----|Delete contents of @results  

----|*Parse query plan from query plan cache using XML document definition: 

----|----|Insert the following fields into @results from the output parse: 

----|----|----|Plan handle, last logical reads,  

----|----|----|Estimated cost, estimated rows.  

 

Update ##mv link with the data mapped as follows, keyed on plan_handle: 

----|(@mv_link)Original query cost <- (@results)Estimated cost  

----|(@mv_link)Original query read count <- (@results)Last logical reads 

----|(@mv_link)Original query rows <- (@results)Estimated rows  

----|Where: 

----|----|(@mv_link) Query cost is null OR ** (@mv_link) Query rows is null  

 

For each query in ##mv_link where costs were successfully obtained: 

----|Execute new query ##mv_link.new_query_text  

----|Fetch query execution statistics using process marked as * through to ** above.  

 

Calculate query statistic deltas (efficiency E): 

----|For all rows in ##mv_link: 

----|----|Update original_query_efficiency: 

----|----|----|Set to original_query_rows / (min: 1)(original_query_read_count)  

----|----|Update new_query_efficiency: 

----|----|----|Set to new_query_rows / (min:1) (new_query_read_count)  

----|----|Where:All columns as above exist.  

 

For all rows in ##mv_link: 

----|Where reads < rows returned (due to RDBMS efficiencies/caching): 

----|----|Set original|new query efficiency = 1  

----|Set cost delta = new - original query cost  

----|Set efficiency delta = new - original query efficiency  

 

Destroy any extant MVs: 

----|For all MVs existing in the DB: 

----|----|Anti-join to ##mv table  

----|----|If not exists, drop MV 

 

 

 

Code Listing: 

USE tpcc  

SET NOCOUNT ON 

DECLARE @dSQL NVARCHAR(MAX)  

DECLARE @LogMessage VARCHAR(MAX) 

 



 

- 116 - 

 

 

-- Remove own queries  

DELETE q  

FROM ##q q  

WHERE q.query_text LIKE ('%##q%')  

OR  q.query_text LIKE ('%##mv%')  

OR  q.query_text LIKE ('%#g %')  

OR  q.query_text LIKE ('%tpcc_queries%')  

 

-- Remove queries with CROSS JOINs - hangs the process 

DELETE q  

FROM ##q q  

WHERE q.query_text LIKE ('%CROSS%JOIN%')  

 

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows from ##q'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Remove own queries',  

  @LogMessage = @LogMessage   

 

-- Remove MVs no longer present in ##q together with their table entries  

--SET @dSQL = N''  

--DECLARE cur_ForEachMVToDelete CURSOR LOCAL FAST_FORWARD FOR  

-- SELECT REPLACE(LEFT(mv.associated_view_definition, 50), 'CREATE', 'DROP') 

-- FROM ##mv mv  

-- INNER JOIN ##q_mv_link link ON mv.mv_id = link.mv_id  

-- LEFT JOIN ##q q ON link.plan_handle = q.plan_handle  

-- WHERE q.plan_handle IS NULL  

DECLARE @count INT = 0 

--OPEN cur_ForEachMVToDelete  

--FETCH NEXT FROM cur_ForEachMVToDelete INTO @dSQL  

--WHILE @@FETCH_STATUS = 0 

--BEGIN 

-- BEGIN TRY  

--  SET @dSQL = REPLACE(REPLACE(@dSQL, CHAR(13), ''), CHAR(10), '') 

--  PRINT @dSQL  

--  PRINT '.' 

--  EXEC tpcc..sp_executesql @dSQL  

--  SELECT @@ROWCOUNT  

--  SET  @count += 1 

-- END TRY  

-- BEGIN CATCH  

-- END CATCH 

-- FETCH NEXT FROM cur_ForEachMVToDelete INTO @dSQL  

--END 

--CLOSE cur_ForEachMVToDelete  

--DEALLOCATE cur_ForEachMVToDelete  

 

--SET @LogMessage = 'Dropped ' + CAST(@count AS VARCHAR(15)) + ' MVs'   

--EXEC tpcc_queries.dbo.LogEntry  

--  @CallingScript = 'CreateAndDestroyMVs',  

--  @CallingCode = 'Remove MVs no longer present in ##q',  

--  @LogMessage = @LogMessage   

 

--DELETE  mv  

--FROM ##mv mv  

--INNER JOIN ##q_mv_link link ON mv.mv_id = link.mv_id  

--LEFT JOIN ##q q ON link.plan_handle = q.plan_handle  

--WHERE q.plan_handle IS NULL  

 

--SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from ##mv'   

--EXEC tpcc_queries.dbo.LogEntry  

--  @CallingScript = 'CreateAndDestroyMVs',  

--  @CallingCode = 'Remove MVs no longer present in ##q',  

--  @LogMessage = @LogMessage   
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--DELETE link  

--FROM ##q_mv_link link  

--LEFT JOIN ##mv mv ON link.mv_id = mv.mv_id  

--WHERE mv.mv_id IS NULL  

---- delete duplicates 

--;WITH distincts AS (  

-- SELECT MAX(mv_link_id) [max], plan_handle, mv_id  

-- FROM ##q_mv_link  

-- GROUP BY plan_handle, mv_id )  

--DELETE link 

--FROM ##q_mv_link link  

--LEFT JOIN distincts d ON link.mv_link_id = d.[max]  

--WHERE d.[max] IS NULL  

 

--SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from 

##q_mv_link'   

--EXEC tpcc_queries.dbo.LogEntry  

--  @CallingScript = 'CreateAndDestroyMVs',  

--  @CallingCode = 'Remove MVs no longer present in ##q',  

--  @LogMessage = @LogMessage   

 

-- Start query parsing 

DECLARE cur_ForEachNinQ CURSOR LOCAL FAST_FORWARD FOR  

 -- Can modify with TOP N PERCENT 

 SELECT plan_handle, usecounts, query_text, attributes, datasources, predicates  

 FROM ##q q  

 WHERE suitable_candidate IS NULL  

 ORDER BY q.usecounts DESC  

DECLARE @thisPlanHandle VARBINARY(8000), @thisUsecounts BIGINT, @thisQueryText 

VARCHAR(MAX)  

DECLARE @thisAttributes VARCHAR(MAX), @thisDatasources VARCHAR(MAX), @thisPredicates 

VARCHAR(MAX)  

DECLARE @c INT = 0 

OPEN cur_ForEachNInQ  

FETCH NEXT FROM cur_ForEachNInQ INTO @thisPlanHandle, @thisUseCounts, @thisQueryText, 

@thisAttributes, @thisDatasources, @thisPredicates 

WHILE @@FETCH_STATUS = 0 

BEGIN  

 -- Does query match standard SELECT, FROM, WHERE? 

 -- First check if there is nesting - remove these from scope  

  IF SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%SELECT%')  

  OR SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%FROM%')  

  OR SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%WHERE%')  

   UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle = 

@thisPlanHandle  

  IF SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%SELECT%')  

  OR SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%FROM%')  

  OR SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%WHERE%')  

   UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle = 

@thisPlanHandle  

  IF SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%SELECT%')  

  OR SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%FROM%')  

  OR SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%WHERE%')  

   UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle = 

@thisPlanHandle  

 -- Now check if there is any use of system functions in the datasources - remove 

from scope  

  IF @thisDatasources LIKE ('%(%)%')  

   UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle = 

@thisPlanHandle 

 -- Check that we have, at least, a FROM clause - exclude any queries with no 

explicit datasources (like SELECT 1) 

  IF @thisDatasources IS NULL OR LEN(@thisDatasources) = 0 
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   UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle = 

@thisPlanHandle  

 -- Do there exist identical queries with different predicates in ##q?  If so group 

them up with pipe delimitation. 

  SELECT @c = COUNT(*) FROM (  

   SELECT q.attributes, q.datasources  

   FROM ##q q  

   WHERE q.attributes = @thisAttributes  

   AND  q.datasources = @thisDatasources  

   AND  ISNULL(q.predicates,'') != ISNULL(q.predicates,'') ) 

x 

  IF @c > 1  

  BEGIN 

   UPDATE q  

   SET  q.grouped_predicates = 

ISNULL(q.grouped_predicates,'') + '|' + q.predicates  

   FROM ##q q  

   WHERE plan_handle = @thisPlanHandle  

  END  

  -- If the query isn't already marked as unsuitable, mark as suitable  

  IF ( SELECT TOP 1 suitable_candidate FROM ##q WHERE plan_handle = 

@thisPlanHandle ) IS NULL 

  BEGIN 

   UPDATE q SET q.suitable_candidate = 1 FROM ##q q WHERE 

q.plan_handle = @thisPlanHandle  

  END 

 FETCH NEXT FROM cur_ForEachNInQ INTO @thisPlanHandle, @thisUseCounts, 

@thisQueryText, @thisAttributes, @thisDatasources, @thisPredicates 

END 

CLOSE cur_ForEachNinQ  

DEALLOCATE cur_ForEachNinQ  

 

-- Where the data sources are identical, group the predicates and apply to all 

grouped_predicates 

DECLARE cur_ForEachDistinctDatasource CURSOR LOCAL FAST_FORWARD FOR  

 SELECT DISTINCT q.datasources  

 FROM ##q q  

 WHERE q.predicates != ''  

 AND  q.suitable_candidate = 1   

 AND  q.grouped_predicates IS NULL  

DECLARE @thisDS VARCHAR(MAX), @predicateList VARCHAR(MAX) = ''  

OPEN cur_ForEachDistinctDatasource 

FETCH NEXT FROM cur_ForEachDistinctDatasource INTO @thisDS 

WHILE @@FETCH_STATUS = 0 

BEGIN 

 ;WITH predicates AS (  

  SELECT DISTINCT q.predicates [p]  

  FROM ##q q  

  WHERE q.datasources = @thisDS  

  AND  q.predicates != ''  

  AND  q.suitable_candidate = 1  

  ) 

 SELECT @predicateList =  

  CASE WHEN @predicateList = ''  

    THEN predicates.p  

    ELSE @predicateList + COALESCE(', ' + predicates.p, '') 

  END  

 FROM predicates  

 UPDATE  q  

 SET  q.grouped_predicates = @predicateList 

 FROM ##q q 

 WHERE q.datasources = @thisDS  

 AND  q.predicates != ''  

 AND  q.suitable_candidate = 1  
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 SET @predicateList = '' 

 FETCH NEXT FROM cur_ForEachDistinctDatasource INTO @thisDS 

END 

CLOSE cur_ForEachDistinctDatasource  

DEALLOCATE cur_ForEachDistinctDatasource  

 

-- Now remove all queries from system datasources from scope 

DELETE q  

FROM ##q q  

WHERE q.datasources LIKE ('%master.%')  

OR  q.datasources LIKE ('%model.%') 

OR  q.datasources LIKE ('%msdb.%') 

OR  q.datasources LIKE ('%tempdb.%') 

 

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from ##q'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Remove all queries from system datasources from scope',  

  @LogMessage = @LogMessage   

 

DROP TABLE IF EXISTS #g  

CREATE TABLE #g ( plan_handle VARBINARY(MAX), attributes VARCHAR(MAX), 

original_attributes VARCHAR(MAX),   

     datasources VARCHAR(MAX), predicates VARCHAR(MAX), 

original_predicates VARCHAR(MAX) )  

INSERT INTO #g ( plan_handle, attributes, original_attributes, datasources, predicates, 

original_predicates ) 

 SELECT q.plan_handle, q.attributes, q.attributes, q.datasources, q.predicates, 

q.predicates  

 FROM ##q q  

 WHERE q.suitable_candidate = 1  

 

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries into #g'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Identify suitable queries from ##q into #g',  

  @LogMessage = @LogMessage   

 

-- b) group queries by same datasources  

-- for each distinct datasource, aggregate the distinct attributes  

DECLARE cur_ForEachDS CURSOR LOCAL FAST_FORWARD FOR  

 SELECT DISTINCT g.datasources 

 FROM #g g 

SET @thisDS = '' 

SET @thisAttributes = '' 

DECLARE @thisAttributesSplit VARCHAR(MAX) = '' 

OPEN cur_ForEachDS  

FETCH NEXT FROM cur_ForEachDS INTO @thisDS  

WHILE @@FETCH_STATUS = 0  

BEGIN  

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1) 

 FROM ( 

   SELECT g.attributes + ','  

   FROM #g g  

   WHERE g.datasources = @thisDS 

   FOR  XML PATH ('') ) x (attributes) 

 

 -- This results in a comma-separated list of non-distinct attributes in 

@thisAttributes for @thisDS  

 -- Now de-duplicate this list  

 SET @thisAttributesSplit = '' 

 ;WITH splits AS (  

  SELECT DISTINCT s.[value] 
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  FROM string_split(@thisAttributes, ',') s )  

 

 SELECT @thisAttributesSplit = LEFT(x.attributes, LEN(x.attributes) - 1) 

 FROM ( 

   SELECT splits.[value] + ','  

   FROM splits   

   FOR  XML PATH ('') ) x (attributes) 

  

 SET @thisAttributes = @thisAttributesSplit  

 -- Now update #g with the new deduplicated list of attributes 

 UPDATE  g  

 SET  g.attributes = 'SELECT ' + REPLACE(REPLACE(@thisAttributes, 

'SELECT', ''), CHAR(8), ' ') 

 FROM #g g  

 WHERE g.datasources = @thisDS  

  

 SET @thisAttributes = '' 

 SET @thisAttributesSplit = '' 

 FETCH NEXT FROM cur_ForEachDS INTO @thisDS  

END 

CLOSE cur_ForEachDS  

DEALLOCATE cur_ForEachDS  

 

-- Now we need to alias each attribute to avoid column name collisions later when creating 

MVs.  

-- We string-split attributes by comma, ignoring the initial SELECT, append the alias as ' 

AS [alias]' 

-- then glue everything back together again. 

DECLARE cur_ForEachAttributes CURSOR LOCAL FAST_FORWARD FOR  

 SELECT g.plan_handle, g.attributes 

 FROM #g g  

DECLARE @splits TABLE ( [value] VARCHAR(MAX) ) 

OPEN cur_ForEachAttributes  

FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes 

WHILE @@FETCH_STATUS = 0  

BEGIN 

 INSERT INTO @splits  

  SELECT DISTINCT value FROM string_split(@thisAttributes, ',')  

 UPDATE @splits  

 SET  [value] = REPLACE([value], 'SELECT ', '') 

 UPDATE @splits  

 SET  value = value + ' AS ' + '[' + REPLACE(REPLACE(REPLACE(value, '[', 

''),']', ''),' ', '') + ']'  

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1) 

 FROM ( 

   SELECT s.value + ','  

   FROM @splits s   

   FOR  XML PATH ('') ) x (attributes) 

 SET  @thisAttributes = 'SELECT ' + @thisAttributes 

 UPDATE  g  

 SET  g.attributes = @thisAttributes 

 FROM #g g  

 WHERE g.plan_handle = @thisPlanHandle  

 

 DELETE FROM @splits  

 FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes 

END 

CLOSE cur_ForEachAttributes 

DEALLOCATE cur_ForEachAttributes 

 

-- Now we do it again for the original_attributes since the data source has changed. 

DECLARE cur_ForEachAttributes CURSOR LOCAL FAST_FORWARD FOR  

 SELECT g.plan_handle, g.original_attributes 

 FROM #g g  
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DELETE FROM @splits  

OPEN cur_ForEachAttributes  

FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes 

WHILE @@FETCH_STATUS = 0  

BEGIN 

 INSERT INTO @splits  

  SELECT DISTINCT value FROM string_split(@thisAttributes, ',')  

 UPDATE @splits  

 SET  [value] = REPLACE([value], 'SELECT ', '') 

 UPDATE @splits  

 SET  value = value + ' AS ' + '[' + REPLACE(REPLACE(REPLACE(value, '[', 

''),']', ''),' ', '') + ']'  

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1) 

 FROM ( 

   SELECT s.value + ','  

   FROM @splits s   

   FOR  XML PATH ('') ) x (attributes) 

 SET  @thisAttributes = 'SELECT ' + @thisAttributes 

 UPDATE  g  

 SET  g.original_attributes = @thisAttributes 

 FROM #g g  

 WHERE g.plan_handle = @thisPlanHandle  

 

 DELETE FROM @splits  

 FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes 

END 

CLOSE cur_ForEachAttributes 

DEALLOCATE cur_ForEachAttributes 

 

-- schema binding fails if the datasources aren't in two-part names. 

-- replace each datasource with dbo.<datasource> if it isn't already a two-part name i.e. 

named schema. 

-- address the simple case first, where FROM <word> exists, replace with FROM dbo.<word> 

UPDATE g  

SET  g.datasources = REPLACE(g.datasources, 'FROM ', 'FROM dbo.') 

FROM #g g  

WHERE g.datasources NOT LIKE ('%.%') -- no dot therefore no joins 

 

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Update #g with two-part names - simple case',  

  @LogMessage = @LogMessage   

 

 

-- Now address the complex case. 

-- Where exists a space + datasource name, this must be a table.  

-- If JOINs are involved we can replace the JOIN with a JOIN + ' ' + 'dbo.'  

-- Won't work for views involving multiple schemas but this is rare and out of scope for 

PoC.  

UPDATE  g 

SET  g.datasources = REPLACE(REPLACE(g.datasources, 'JOIN', 'JOIN dbo.'), 

'FROM', 'FROM dbo.') 

FROM #g g  

WHERE g.datasources LIKE ('%JOIN%')  

 

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Update #g with two-part names - JOIN case',  

  @LogMessage = @LogMessage   
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UPDATE g  

SET  g.datasources = REPLACE(g.datasources, 'dbo. ', 'dbo.') 

FROM #g g  

WHERE g.datasources LIKE ('%dbo. %') 

 

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Update #g with two-part names - dbo. space case',  

  @LogMessage = @LogMessage   

 

 

-- for each distinct datasource, aggregate the predicates replacing all ANDs with ORs  

-- as this will ensure 100% coverage of all predicates necessary for all queries for those 

datasources  

-- (performance issues could happen here)  

-- store the original predicates in the g.original_predicates column for computation of 

the new_query_text 

 

DECLARE cur_ForEachDS CURSOR LOCAL FAST_FORWARD FOR  

 SELECT DISTINCT g.datasources 

 FROM #g g 

SET @thisDS = '' 

SET @thisPredicates = '' 

DECLARE @thisPredicatesSplit VARCHAR(MAX) = '' 

OPEN cur_ForEachDS 

SET  @count = 0 

FETCH NEXT FROM cur_ForEachDS INTO @thisDS  

WHILE @@FETCH_STATUS = 0  

BEGIN  

 SELECT @thisPredicates = LEFT(x.predicates, LEN(x.predicates) - 1) 

 FROM ( 

   SELECT g.predicates + ','  

   FROM #g g  

   WHERE g.datasources = @thisDS 

   FOR  XML PATH ('') ) x (predicates) 

 

 -- This results in a comma-separated list of non-distinct predicates in 

@thisPredicates for @thisDS  

 -- Now de-duplicate this list  

 SET @thisPredicatesSplit = '' 

 ;WITH splits AS (  

  SELECT DISTINCT s.[value] 

  FROM string_split(@thisPredicates, ',') s )  

 

 SELECT @thisPredicatesSplit = LEFT(x.predicates, LEN(x.predicates) - 1) 

 FROM ( 

   SELECT splits.[value] + ','  

   FROM splits   

   FOR  XML PATH ('') ) x (predicates) 

  

 SET @thisPredicates = @thisPredicatesSplit 

  

 -- Now replace commas with OR statements as these are predicates  

 SET @thisPredicates = REPLACE(@thisPredicates, ',', ' OR ') 

 

 -- Now update #g with the new deduplicated list of predicates 

 UPDATE  g  

 SET  g.predicates = @thisPredicates 

 FROM #g g  

 WHERE g.datasources = @thisDS  

 

 SET @count += 1 



 

- 123 - 

 

 

  

 SET @thisPredicates = '' 

 SET @thisPredicatesSplit = '' 

 FETCH NEXT FROM cur_ForEachDS INTO @thisDS  

END 

CLOSE cur_ForEachDS  

DEALLOCATE cur_ForEachDS  

 

SET @LogMessage = 'Updated ' + CAST(@count AS VARCHAR(15)) + ' entries in #g to 

deduplicate predicates'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Predicate deduplication',  

  @LogMessage = @LogMessage   

 

 

-- Fix the 'WHERE OR' / 'OR WHERE' issue  

UPDATE g  

SET  g.predicates = REPLACE(g.predicates, 'WHERE OR', 'OR') 

FROM #g g   

UPDATE g  

SET  g.predicates = REPLACE(g.predicates, 'OR WHERE', 'OR') 

FROM #g g   

UPDATE g  

SET  g.predicates = 'WHERE ' + RIGHT(g.predicates,LEN(g.predicates) - 2)  

FROM #g g 

WHERE LEFT(LTRIM(g.predicates), 2) = 'OR' 

UPDATE g  

SET  g.predicates = REPLACE(g.predicates, 'WHERE R', 'WHERE')  

FROM #g g  

 

 

-- for each resulting distinct expression in #g, script it as an MV if it doesn't already 

exist  

INSERT INTO ##mv (associated_view_definition) 

 SELECT DISTINCT CAST('CREATE VIEW [<<NEWID>>] WITH SCHEMABINDING AS ' +  

      g.attributes + ' ' + g.datasources + ' ' + 

g.predicates AS VARCHAR(8000)) 

 FROM #g g  

 LEFT JOIN ##mv mv ON (g.attributes + ' ' + g.datasources + ' ' + g.predicates) =  

      

 REPLACE(RIGHT(mv.associated_view_definition, LEN(mv.associated_view_definition) - 

73), 'ELECT', 'SELECT') 

 WHERE REPLACE(RIGHT(mv.associated_view_definition, 

LEN(mv.associated_view_definition) - 73), 'ELECT', 'SELECT') IS NULL  

 AND  ISNULL(mv.mv_implemented, 0) = 0 

 

DECLARE @inserted INT = @@ROWCOUNT  

 

-- deduplicate ##mv based on associated view definition - should solve the problem 

DELETE mv  

FROM ##mv mv  

WHERE mv.mv_id NOT IN ( 

SELECT MAX(mv.mv_id) 

FROM ##mv mv  

GROUP BY SUBSTRING(mv.associated_view_definition, CHARINDEX('SELECT', 

mv.associated_view_definition, 1), 8000) )   

 

DECLARE @deleted INT = @@ROWCOUNT  

 

SET @LogMessage = 'Inserted ' + CAST(@inserted - @deleted AS VARCHAR(15)) + ' entries into 

##mv'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  
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  @CallingCode = 'Create new entries in ##mv if do not already exist',  

  @LogMessage = @LogMessage   

 

-- now create the newids  

UPDATE mv  

SET  mv.associated_view_definition = REPLACE(mv.associated_view_definition, 

'<<NEWID>>', NEWID()) 

FROM ##mv mv  

 

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in ##mv'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Update the MV entries with new NEWID()s',  

  @LogMessage = @LogMessage   

 

-- fix a codepage issue  

UPDATE mv  

SET  mv.associated_view_definition =  

  REPLACE(REPLACE(associated_view_definition, '&amp;lt;', '<'), '&amp;gt;', 

'>') 

FROM ##mv mv  

 

UPDATE g  

SET  g.predicates =  

  REPLACE(REPLACE(predicates, '&amp;lt;', '<'), '&amp;gt;', '>') 

FROM #g g   

 

-- create the link entries, if they don't already exist  

INSERT INTO ##q_mv_link ( mv_id, plan_handle, new_query_text, date_created )  

 SELECT mv.mv_id, g.plan_handle,  

   g.original_attributes + ' ' +  

   --g.attributes + ' ' +  

   'FROM ' +  

   SUBSTRING(mv.associated_view_definition, 13, 37) + ']' +  

   --g.predicates [new_query_text],  

   g.original_predicates [new_query_text], -- trial to test 

performance improvement. 

   GETDATE()  

 FROM ##mv mv  

 INNER JOIN #g g  

 ON LTRIM(RTRIM(mv.attributes_datasources_predicates)) =  

  LTRIM(RTRIM(g.attributes + ' ' + g.datasources + ' ' + g.predicates))

      

 

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries into 

##q_mv_link'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Create new entries in ##q_mv_link if do not already exist',  

  @LogMessage = @LogMessage   

 

-- clean up MV definition for double dbo issue  

UPDATE  mv 

SET  mv.associated_view_definition = REPLACE(mv.associated_view_definition, 

'dbo.dbo.', 'dbo.') 

FROM ##mv mv  

-- clean up MV definition for OR/der issue  

UPDATE mv  

SET  mv.associated_view_definition = REPLACE(mv.associated_view_definition, ' 

der', 'order') 

FROM ##mv mv  

 

-- Update the original query columns in ##q_mv_link  

UPDATE link  
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SET  link.original_query_columns =  

  LEN(SUBSTRING(q.query_text, 1, CHARINDEX('FROM', q.query_text, 1))) -  

   LEN(REPLACE(SUBSTRING(q.query_text, 1, CHARINDEX('FROM', 

q.query_text, 1)), ',', '')) + 1 

FROM ##q_mv_link link 

INNER JOIN ##q q ON link.plan_handle = q.plan_handle  

 

-- for each MV, check MV parses.  Delete those that don't from both the link and mv 

tables.  

-- added top 1m clause to prevent performance hangs. 

DECLARE cur_ForEachMV CURSOR LOCAL FAST_FORWARD FOR  

 SELECT mv_id, mv.associated_view_definition 

 FROM ##mv mv  

 WHERE mv.mv_implemented IS NULL OR mv.mv_implemented = 0 

DECLARE @thisMVID INT 

DECLARE @thisView VARCHAR(MAX)  

DECLARE @success BIT = 0 

SET  @count = 0 

DECLARE @failedCount INT = 0 

DECLARE @rcounts TABLE ( r BIGINT ) 

OPEN cur_ForEachMV  

FETCH NEXT FROM cur_ForEachMV INTO @thisMVID, @thisView  

WHILE @@FETCH_STATUS = 0  

BEGIN  

 SET @dSQL = CAST(@thisView AS NVARCHAR(MAX))  

 BEGIN TRY   

  -- Bug fix:  Remove accidental CROSS JOIN conditions.  

  IF @dSQL LIKE ('%orders.o_w_id = customer.c_w_id%')  

  OR @dSQL LIKE ('%history.h_c_w_id = customer.c_w_id%') 

  OR @dSQL LIKE ('%new_order.no_w_id = orders.o_w_id%') 

  BEGIN 

   SET @success = 0 

  END 

  ELSE BEGIN 

   -- First check the expected row count.  If effectively a cross 

join, abort.  

   SET @dSQL = 'SELECT COUNT(*) FROM ( ' + SUBSTRING(@dSQL, 74, 8000) 

+ ') X;' 

   PRINT @dSQL  

   INSERT INTO @rcounts  

    EXEC tpcc..sp_executesql @dSQL  

   IF ( SELECT TOP 1 r FROM @rcounts ) <= 1000000  

    BEGIN  

     PRINT 'View passed row check test.  Proceeding to 

create view...' 

     SET @dSQL = CAST(@thisView AS NVARCHAR(MAX))  

     PRINT @dSQL  

     EXEC tpcc..sp_executesql @dSQL  

     SET @success = 1  

     SET @count += 1  

    END 

   ELSE BEGIN  

    SET @success = 0  

   END 

  END 

 END TRY  

 BEGIN CATCH  

  PRINT ERROR_MESSAGE() 

  PRINT 'Failed to create MV.' 

  SET @success = 0  

 END CATCH 

 IF @success = 1  

 BEGIN 

  PRINT 'Successfully created MV' 
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  UPDATE mv  

  SET  mv.mv_implemented = 1 

  FROM ##mv mv  

  WHERE mv.mv_id = @thisMVID  

 END 

 ELSE  

 BEGIN 

  SET @failedCount += 1 

  DELETE FROM ##q_mv_link WHERE mv_id = @thisMVID  

  DELETE FROM ##mv WHERE mv_id = @thisMVID  

 END 

 SET @success = 0 

 DELETE FROM @rcounts  

 FETCH NEXT FROM cur_ForEachMV INTO @thisMVID, @thisView  

END 

CLOSE cur_ForEachMV  

DEALLOCATE cur_ForEachMV  

 

 

SET @LogMessage = 'Created ' + CAST(@count AS VARCHAR(15)) + ' new MVs'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Create new MVs',  

  @LogMessage = @LogMessage   

 

SET @LogMessage = 'Failed to create ' + CAST(@failedCount AS VARCHAR(15)) + ' new MVs'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Create new entries in ##mv if do not already exist',  

  @LogMessage = @LogMessage   

 

-- Create the clustered indexes on all the views - this materialises them away from the 

base tables. 

-- Try the first column only.  

SET @count = 0 

SET @failedCount = 0 

DECLARE cur_ForEachDistinctView CURSOR LOCAL FAST_FORWARD FOR  

 SELECT DISTINCT v.name [viewname], mv.mv_id 

 FROM tpcc.sys.views v  

 -- Exclude those views already considered. 

 INNER JOIN ##mv mv ON mv.associated_view_definition LIKE ('%' + v.[name] + '%')  

 WHERE mv.has_indexed_view IS NULL  

DECLARE @thisViewName VARCHAR(255) = '' 

DECLARE @cName VARCHAR(255) 

OPEN cur_ForEachDistinctView  

FETCH NEXT FROM cur_ForEachDistinctView INTO @thisViewName, @thisMVID 

WHILE @@FETCH_STATUS = 0  

BEGIN  

 SET @cName = ( SELECT TOP 1 c.name  

     FROM tpcc.sys.columns c  

     INNER JOIN tpcc.sys.views v  

     ON c.object_id = v.object_id  

     WHERE column_id = 1  

     AND v.[name] = @thisViewName ) 

 SET @dSQL = 'CREATE UNIQUE CLUSTERED INDEX rid_' + REPLACE(@thisViewName, '-', '') 

+  

 ' ON dbo.[' + @thisViewName + '] ([' + @cName + ']);' 

 BEGIN TRY  

  -- This will only succeed for views without dup keys, without LEFT/RIGHT 

joins.  

  -- The unindexed views will remain though, can address with other 

strategies i.e. NCIXs. 

  EXEC sp_executesql @dSQL 

  UPDATE mv  
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  SET  mv.has_indexed_view = 1 

  FROM ##mv mv  

  WHERE mv.associated_view_definition LIKE ('%' + @thisViewName + '%')  

  SET @count += 1 

 END TRY  

 BEGIN CATCH 

  PRINT ERROR_MESSAGE()  

  PRINT 'Attempting to replace the view with a table...' 

  BEGIN TRY  

   SET @dSQL = 'DROP VIEW [' + @thisViewName + '];'  

   EXEC tpcc..sp_executesql @dSQL 

   SET @dSQL = ( SELECT TOP 1 associated_view_definition FROM ##mv 

WHERE mv_id = @thisMVID )  

   SET @dSQL = REPLACE(@dSQL, 'CREATE VIEW ', 'SELECT * INTO ') 

   SET @dSQL = REPLACE(@dSQL, 'WITH SCHEMABINDING AS', 'FROM (')  

   SET @dSQL = @dSQL + ') X' 

   PRINT @dSQL 

   EXEC sp_executesql @dSQL  

  END TRY  

  BEGIN CATCH  

   PRINT  ERROR_MESSAGE() 

   PRINT 'Table creation failed.' 

   SET @failedCount += 1 

   UPDATE mv  

   SET  mv.has_indexed_view = 0 

   FROM ##mv mv  

   WHERE mv.associated_view_definition LIKE ('%' + @thisViewName + 

'%')  

  END CATCH 

 END CATCH 

 FETCH NEXT FROM cur_ForEachDistinctView INTO @thisViewName, @thisMVID  

END 

CLOSE cur_ForEachDistinctView  

DEALLOCATE cur_ForEachDistinctView  

 

SET @LogMessage = 'Created ' + CAST(@count AS VARCHAR(15)) + ' new indexes on MVs'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Create new unique clustered indexes on MVs',  

  @LogMessage = @LogMessage   

 

SET @LogMessage = 'Failed to create ' + CAST(@failedCount AS VARCHAR(15)) + ' new indexes 

on MVs'   

EXEC tpcc_queries.dbo.LogEntry  

  @CallingScript = 'CreateAndDestroyMVs',  

  @CallingCode = 'Create new unique clustered indexes on MVs',  

  @LogMessage = @LogMessage   

 

-- For those that failed i.e. queries aren't suitable for indexed views, we can use 

database tables in the same way. 

-- Duplicates are allowed on those and we may still see better performance.  

-- First drop the view, then recreate it as a table (SELECT TOP 0 * FROM <view> INTO 

<table_renamed>, drop view, rename table) 

-- The new_query_text then remains valid. 

-- Consider how you will drop tables rather than views. 

 

-- YOU ARE HERE 

 

 

 

 

-- For queries in ##q_mv_link, update the new_query_text to use [alias] square brackets 

for the predicates 

-- else it won't parse as the datasource has changed to the MV. 
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DECLARE cur_ForEachNewQuery CURSOR LOCAL FAST_FORWARD FOR  

 SELECT link.mv_link_id, link.new_query_text  

 FROM ##q_mv_link link  

OPEN cur_ForEachNewQuery  

FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVID, @thisQueryText  

WHILE @@FETCH_STATUS = 0 

BEGIN 

 DELETE FROM @splits  

 INSERT INTO @splits  

  SELECT [value] FROM string_split(@thisQueryText, ' ')  

 UPDATE @splits SET [value] = '[' + [value] + ']' WHERE [value] LIKE ('%.%')  

 SELECT @thisQueryText = x.querytext -- LEFT(x.querytext, LEN(x.querytext) - 1) 

 FROM ( 

   SELECT s.value + ' '  

   FROM @splits s   

   FOR  XML PATH ('') ) x (querytext) 

 UPDATE link  

 SET  link.new_query_text = @thisQueryText  

 FROM ##q_mv_link link  

 WHERE link.mv_link_id = @thisMVID  

 FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVID, @thisQueryText  

END 

CLOSE cur_ForEachNewQuery 

DEALLOCATE cur_ForEachNewQuery  

 

-- Fix XML codepage issues in new_query_text 

UPDATE link  

SET  link.new_query_text = REPLACE(REPLACE(REPLACE(link.new_query_text, '[[', 

'['), ']]', ']'), '&#x20;', ' ') 

FROM ##q_mv_link link   

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, ',]', ', ')  

FROM ##q_mv_link link   

UPDATE link  

SET  link.new_query_text  =  

  REPLACE(REPLACE(REPLACE(REPLACE(link.new_query_text , '&amp;lt;', '<'), 

'&amp;gt;', '>'), '&lt;', '<'), '&gt;', '>') 

FROM ##q_mv_link link   

UPDATE link  

SET  link.new_query_text = REPLACE(REPLACE(link.new_query_text, 'WHERE', ' WHERE 

'), 'FROM', ' FROM ') 

FROM ##q_mv_link link  

-- the following addresses a bug with square brackets - a workaround, to be fixed 

(string_split probably at fault). 

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],w', '], [w') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],d', '], [d') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],c', '], [c') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],h', '], [h') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],i', '], [i') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],n', '], [n') 

FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],o', '], [o') 
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FROM ##q_mv_link link  

UPDATE link  

SET  link.new_query_text = REPLACE(link.new_query_text, '],s', '], [s') 

FROM ##q_mv_link link  

 

/* 

(runs as async process populates efficiency data) 

 GROUP M.V.s AGAINST SUM OF EFFICIENCY DELTAS (WHERE EXIST) IN #MV 

   WHERE SUM(EFFICIENCY DELTA) <=0, DROP M.V.   

*/ 

-- TO ADD WHEN Analyse SCRIPT IS RUNNING  

 

--;WITH inefficientMVs AS ( 

--SELECT link.mv_id, SUM(link.efficiency_delta) [overall_efficiency_delta] 

--FROM ##q_mv_link link  

--WHERE link.efficiency_delta IS NOT NULL  

--GROUP BY link.mv_id )  

--DELETE link  

--FROM ##q_mv_link link  

--INNER JOIN inefficientMVs ON link.mv_id = inefficientMVs.mv_id  

--WHERE overall_efficiency_delta < 0  

--DELETE mv  

--FROM ##mv mv  

--LEFT JOIN ##q_mv_link link ON mv.mv_id = link.mv_id  

--WHERE link.mv_id IS NULL  

 

 

---- SUMMARY FOR TESTING 

--SELECT 'Queries in cache: ', COUNT(*) [count] 

--FROM sys.dm_exec_cached_plans  UNION ALL  

--SELECT  'Queries in ##q: ', COUNT(*)  

--FROM ##q UNION ALL  

--SELECT 'Queries in #g: ', COUNT(*)  

--FROM #g UNION ALL  

--SELECT  'New MVs in ##mv: ', COUNT(*)  

--FROM ##mv UNION ALL  

--SELECT 'Links in ##q_mv_link: ', COUNT(*)  

--FROM ##q_mv_link  

 

--SELECT q.query_text, mv.associated_view_definition, link.new_query_text  

--FROM ##q q  

--INNER JOIN ##q_mv_link link ON q.plan_handle = link.plan_handle  

--INNER JOIN ##mv mv ON link.mv_id = mv.mv_id  

 

--TRUNCATE TABLE ##q_mv_link 

--TRUNCATE TABLE ##mv  

--TRUNCATE TABLE #g 
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E.5 Implementation of the Query Generator and Caller  

(for Testing Purposes) 

 

WHILE 1=1  

BEGIN 

 

-- INIT 

DROP TABLE IF EXISTS #t  

DROP TABLE IF EXISTS #c  

DROP TABLE IF EXISTS #w 

DROP TABLE IF EXISTS #p  

DROP TABLE IF EXISTS #s  

CREATE TABLE #t ( tbl VARCHAR(255) )  

CREATE TABLE #c ( col VARCHAR(255) ) 

CREATE TABLE #w ( col VARCHAR(255), y VARCHAR(255) ) 

DECLARE @thisWCol VARCHAR(255), @thisWY VARCHAR(255)  

CREATE TABLE #p ( id TINYINT, primitive VARCHAR(15) ) 

CREATE TABLE #s ( id INT IDENTITY(1,1) PRIMARY KEY NOT NULL, s VARCHAR(MAX), f 

VARCHAR(MAX), w VARCHAR(MAX) ) 

INSERT INTO #p  

 SELECT 1, '=' UNION ALL  

 SELECT 2, '<' UNION ALL  

 SELECT 3, '>' UNION ALL  

 SELECT 4, '<=' UNION ALL  

 SELECT 5, '>=' UNION ALL  

 SELECT 6, '!=' UNION ALL  

 SELECT 7, 'IS NULL' UNION ALL  

 SELECT 8, 'IS NOT NULL' 

DECLARE @dSQL NVARCHAR(MAX) 

DECLARE @SelectStmt VARCHAR(MAX) = '', @FromStmt VARCHAR(MAX) = '', @WhereStmt 

VARCHAR(MAX) = '' 

DECLARE @randomPrim VARCHAR(15) 

-- Get random number of user tables > 1 from tpcc in any order 

SET @dSQL = N' 

INSERT INTO #t 

 SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 8 + 2 AS CHAR(1)) +  

 ' name FROM tpcc.sys.tables t WHERE t.type_desc = ''USER_TABLE'' ORDER BY 

NEWID();' 

EXEC sp_executesql @dSQL  

-- for each table, fetch a random % of the columns into list #c 

DECLARE cur_forEachTable CURSOR FAST_FORWARD FOR  

 SELECT tbl FROM #t   

DECLARE @thisT VARCHAR(255)  

OPEN cur_forEachTable 

FETCH NEXT FROM cur_forEachTable INTO @thisT  

WHILE @@FETCH_STATUS = 0  

BEGIN 

 SET @dSQL = N' 

 INSERT INTO #c (col) 

  SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 100 + 1 AS CHAR(3)) + ' 

PERCENT c.name  

  FROM tpcc.sys.columns c INNER JOIN tpcc.sys.tables t ON c.object_id = 

t.object_id  

  WHERE t.name = ''' + @thisT + '''' 

 EXEC sp_executesql @dSQL 

 -- Convert column to comma-separated list 

 -- Construct the SELECT statement for this table 

 SELECT @SelectStmt = CASE  

        WHEN @SelectStmt = ''  

        THEN c.col  

        ELSE @SelectStmt + 

COALESCE(',' + c.col, '') 
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       END 

 FROM #c c 

 

 -- Construct the FROM statement 

 SET @FromStmt = @thisT 

  

 -- Construct the WHERE statement 

 -- Get column datatypes 

 SET @dSQL = N' 

 INSERT INTO #w (col) 

 SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 100 + 1 AS CHAR(3)) + ' PERCENT 

c.name  

  FROM tpcc.sys.columns c INNER JOIN tpcc.sys.tables t ON c.object_id = 

t.object_id  

  WHERE t.name = ''' + @thisT + '''' 

 EXEC sp_executesql @dSQL  

 IF EXISTS ( SELECT * FROM #w )  

  UPDATE w 

  SET w.y = y.[name]  

  FROM tpcc.sys.columns c  

  INNER JOIN tpcc.sys.types y ON c.system_type_id = y.system_type_id  

  INNER JOIN #w w ON c.[name] = w.col  

  INNER JOIN tpcc.sys.tables t ON c.object_id = t.object_id   

  AND t.[name] = @thisT  

  

 -- Constrict predicates to numerics, ints, bits  

 DELETE FROM #w WHERE y NOT IN ('bigint','int','decimal','numeric','float','bit') 

 

 -- Fully-qualify the predicates (not using aliases)  

 UPDATE w SET w.col = @FromStmt + '.' + w.col FROM #w w  

 

 IF EXISTS ( SELECT * FROM #w )  

 BEGIN  

  DECLARE cur_ForEachWhere CURSOR LOCAL FAST_FORWARD FOR  

   SELECT w.col, w.y 

   FROM #w w 

  OPEN cur_ForEachWhere  

  FETCH NEXT FROM cur_ForEachWhere INTO @thisWCol, @thisWY  

  WHILE @@FETCH_STATUS = 0  

  BEGIN 

   IF @WhereStmt = ''  

    SET @WhereStmt = '' 

   -- Get a random primitive  

   SET @randomPrim = ( SELECT TOP 1 p.primitive FROM #p p ORDER BY 

NEWID() )  

   IF @randomPrim = 'IS NULL' OR @randomPrim = 'IS NOT NULL'  

    SET @WhereStmt = @WhereStmt + @thisWCol + ' ' + @randomPrim  

   ELSE BEGIN 

    IF @thisWY = 'bit' 

     SET @WhereStmt = @WhereStmt + @thisWCol + ' ' + 

@randomPrim + ' ' + CAST(ABS(CHECKSUM(NEWID())) % 2 AS CHAR(1)) 

    IF @thisWY IN ('bigint', 'int') 

     SET @WhereStmt = @WhereStmt + @thisWCol + ' ' + 

@randomPrim + ' ' + CAST(ABS(CHECKSUM(NEWID())) % 10000 AS VARCHAR(30)) 

    IF @thisWY IN ('numeric','decimal') 

     SET @WhereStmt = @WhereStmt + @thisWCol + ' ' + 

@randomPrim + ' ' +  

      CAST(ABS(CHECKSUM(NEWID())) % 10000 + 1 / 

(ABS(CHECKSUM(NEWID())) % 10000 + 1) AS VARCHAR(30))  

    END  

   -- Random AND/OR selection 

   SET @WhereStmt = @WhereStmt +  

    CASE WHEN ABS(CHECKSUM(NEWID())) % 2 + 1 = 1 THEN ' AND ' 

ELSE ' OR ' END  
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   FETCH NEXT FROM cur_ForEachWhere INTO @thisWCol, @thisWY  

  END 

  CLOSE cur_ForEachWhere 

  DEALLOCATE cur_ForEachWhere  

 

 TRUNCATE TABLE #c  

 TRUNCATE TABLE #w 

  

 -- Fully-qualify the attributes (not using aliases)  

 SET @SelectStmt = @FromStmt + '.' + REPLACE(@SelectStmt, ',', ', ' + @FromStmt + 

'.') 

 

 -- Trim the trailing AND/OR from the predicates  

 SET @WhereStmt = CASE WHEN RIGHT(@WhereStmt, 4) = 'AND '  

       THEN LEFT(@WhereStmt, LEN(@WhereStmt) 

- 4)  

       WHEN RIGHT(@WhereStmt, 4) = 'OR'  

       THEN LEFT(@WhereStmt, LEN(@WhereStmt) 

- 3)  

      END  

       

 -- Store the statements for later use  

 INSERT INTO #s ( s, f, w)  

  SELECT @SelectStmt, @FromStmt, @WhereStmt 

 

 SET @SelectStmt = ''  

 SET @FromStmt = '' 

 SET @WhereStmt = '' 

 END 

 FETCH NEXT FROM cur_forEachTable INTO @thisT  

END  

CLOSE cur_forEachTable  

DEALLOCATE cur_forEachTable 

 

-- Process above yields table #s with select, from, where clauses.  

-- Now decide on a number of joins to use, from 0-5.   

-- Uses the relationships specified by the TPC-C benchmark dataset documentation. 

 

UPDATE s SET s.w = '' FROM #s s WHERE s.w IS NULL  

 

DROP TABLE IF EXISTS #j  

CREATE TABLE #j (id TINYINT, jointype VARCHAR(20)) 

DECLARE @joinChance NUMERIC(5,2) 

INSERT INTO #j (id, jointype)  

 -- Add entries into this table by frequency, which we'll use as weighting 

 -- Cross joins are relatively rare so only 1/100 chance, others accordingly. 

 -- No joins are ''  

 SELECT TOP 33 ROW_NUMBER() OVER ( ORDER BY ( SELECT NULL ) ) [id], 'INNER JOIN' 

[jointype] 

 FROM sys.objects  

 UNION ALL  

 SELECT TOP 33 ROW_NUMBER() OVER ( ORDER BY ( SELECT NULL ) ) + 33 [id], 'LEFT 

JOIN' [jointype] 

 FROM sys.objects  

 UNION ALL  

 SELECT TOP 33 ROW_NUMBER() OVER ( ORDER BY ( SELECT NULL ) ) + 66 [id], 'RIGHT 

JOIN' [jointype] 

 FROM sys.objects  

 UNION ALL  

 SELECT  100, 'CROSS JOIN' 

 

-- Pick a JOIN to use.  No join is a natural probability of no relationship existing. 

DECLARE @thisJoin VARCHAR(20) = 'NONE'  

SET @joinChance = ( SELECT ABS(CHECKSUM(NEWID())) % 100 + 1 )  
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 IF @joinChance <= 100  

  SET @thisJoin = ( SELECT jointype FROM #j WHERE id = @joinChance ) 

 

-- Simple case - no JOINs.  Select a random entry from #s. 

IF @thisJoin = 'NONE'  

BEGIN 

 SELECT TOP 1 @SelectStmt = 'SELECT ' + s.s,  

     @FromStmt = 'FROM ' + s.f,  

     @WhereStmt = CASE WHEN s.w != '' THEN  'WHERE ' + 

s.w ELSE '' END  

 FROM #s s 

 ORDER BY NEWID()  

END 

 

-- Construct a relationship table to describe the constraints, based on the TPC-C 

documentation  

-- Cannot use system views as HammerDB does not formalise the relationships 

-- @s1 = child, @s2 = parent 

DROP TABLE IF EXISTS #r  

CREATE TABLE #r ( id INT IDENTITY(1,1) NOT NULL PRIMARY KEY,  

 s1 VARCHAR(255), s1c VARCHAR(255), s2 VARCHAR(255), s2c VARCHAR(255) )  

INSERT INTO #r  

 SELECT 'district', 'd_w_id', 'warehouse', 'w_id' UNION ALL  

 SELECT 'customer', 'c_w_id', 'district', 'd_w_id' UNION ALL  

 SELECT 'customer', 'c_d_id', 'district', 'd_id' UNION ALL  

 SELECT 'history', 'h_c_w_id', 'customer', 'c_w_id' UNION ALL  

 SELECT 'history', 'h_c_d_id', 'customer', 'c_d_id' UNION ALL  

 SELECT 'history', 'h_c_id', 'customer', 'c_id' UNION ALL  

 SELECT 'history', 'h_w_id', 'district', 'd_w_id' UNION ALL  

 SELECT 'history', 'h_d_id', 'district', 'd_id' UNION ALL  

 SELECT 'new_order', 'no_w_id', 'orders', 'o_w_id' UNION ALL  

 SELECT 'new_order', 'no_d_id', 'orders', 'o_d_id' UNION ALL  

 SELECT 'new_order', 'no_o_id', 'orders', 'o_id' UNION ALL  

 SELECT 'orders', 'o_w_id', 'customer', 'c_w_id' UNION ALL  

 SELECT 'orders', 'o_d_id', 'customer', 'c_d_id' UNION ALL  

 SELECT 'orders', 'o_c_id', 'customer', 'c_id' UNION ALL  

 SELECT 'order_line', 'ol_w_id', 'orders', 'o_w_id' UNION ALL  

 SELECT 'order_line', 'ol_d_id', 'orders', 'o_d_id' UNION ALL  

 SELECT 'order_line', 'ol_o_id', 'orders', 'o_id' UNION ALL  

 SELECT 'order_line', 'ol_supply_w_id', 'stock', 's_w_id' UNION ALL  

 SELECT 'order_line', 'ol_i_id', 'stock', 's_i_id' UNION ALL  

 SELECT 'stock', 's_w_id', 'warehouse', 'w_id' UNION ALL  

 SELECT 'stock', 's_i_id', 'item', 'i_id'  

 

-- Inner, left, right JOIN  

DECLARE @s1 INT, @s2 INT, @rN INT = 0  

SELECT @s1 = ( SELECT TOP 1 s.id FROM #s s ORDER BY NEWID() ) 

SELECT @s2 = ( SELECT TOP 1 s.id FROM #s s WHERE s.id != @s1 ORDER BY NEWID() ) 

DECLARE @f1 VARCHAR(255), @f2 VARCHAR(255)  

SELECT @f1 = ( SELECT s.f FROM #s s WHERE s.id = @s1 )  

SELECT @f2 = ( SELECT s.f FROM #s s WHERE s.id = @s2 )  

IF @thisJoin IN ('LEFT JOIN', 'RIGHT JOIN', 'INNER JOIN', 'CROSS JOIN') 

BEGIN  

 IF EXISTS ( SELECT r.id FROM #r r WHERE (r.s1 = @f1 AND r.s2 = @f2) OR (r.s2 = @f1 

AND r.s1 = @f2) ) 

 BEGIN  

  SET @rN = ( SELECT TOP 1 r.id FROM #r r   

     WHERE (r.s1 = @f1 AND r.s2 = @f2) OR (r.s2 = @f1 AND 

r.s1 = @f2) ORDER BY NEWID() ) 

  IF @thisJoin != 'CROSS JOIN' 

   SELECT @FromStmt = r.s1 + ' ' + @thisJoin + ' ' + r.s2 + ' ON ' + 

r.s1 + '.' + r.s1c + ' = ' + r.s2 + '.' + r.s2c   

   FROM #r r  

   WHERE r.id = @rN  



 

- 134 - 

 

 

  IF @thisJoin = 'CROSS JOIN'  

   SELECT @FromStmt = r.s1 + ' ' + @thisJoin + ' ' + r.s2  

   FROM #r r  

   WHERE r.id = @rN  

  SET @SelectStmt = ( SELECT s.s FROM #s s WHERE s.id = @s1 )  

  SET @SelectStmt = @SelectStmt + ', '  

  SET @SelectStmt = @SelectStmt + ( SELECT s.s FROM #s s WHERE s.id = @s2 )  

  SET @WhereStmt = ( SELECT s.w FROM #s s WHERE s.id = @s1 ) 

  SET @WhereStmt = @WhereStmt + ' AND '  

  SET @WhereStmt = @WhereStmt + ( SELECT s.w FROM #s s WHERE s.id = @s2 )  

  IF LEFT(@WhereStmt, 5) = ' AND '  

   SET @WhereStmt = RIGHT(@WhereStmt, LEN(@WhereStmt) - 4)  

  IF RIGHT(@WhereStmt, 5) = ' AND '  

   SET @WhereStmt = LEFT(@WhereStmt, LEN(@WhereStmt) - 4) 

  SET @WhereStmt = LTRIM(RTRIM(@WhereStmt)) 

 END 

 ELSE BEGIN 

  -- No relationship found  

  SET @SelectStmt = ( SELECT TOP 1 s.s FROM #s s) 

  SET @FromStmt = ( SELECT TOP 1 s.f FROM #s s ) 

  SET @WhereStmt = ( SELECT TOP 1 s.w FROM #s s ) 

 END  

END  

 

SET @SelectStmt = 'SELECT ' + @SelectStmt  

SET @FromStmt = 'FROM ' + @FromStmt  

IF LEN(@WhereStmt) > 0 

 SET @WhereStmt = 'WHERE ' + @WhereStmt  

 

--PRINT @SelectStmt 

--PRINT @FromStmt 

--PRINT @WhereStmt 

 

INSERT INTO tpcc_queries.dbo.queries ( query )  

 SELECT @SelectStmt + ' ' + @FromStmt + ' ' + @WhereStmt  

 

-- SELECT * FROM tpcc_queries.dbo.queries  

 

END  

 

 

import pyodbc, random, time, datetime 

 

successCount = 0 

failedCount = 0 

 

def getConnection(db): 

    conn = pyodbc.connect( 

 "Driver={SQL Server Native Client 11.0};"  

 "Server=localhost;"  

        "Database=" + db + ";"  

     "Trusted_Connection=yes;") 

    conn.timeout = 20 # added to kill long-running queries 

    return conn  

  

def getRandomQuery(conn): 

    r = random.randint(1, 10000) 

    stmt = "SELECT query FROM tpcc_queries.dbo.queries WHERE id = ?" 

    curs = conn.cursor() 

    curs.execute(stmt, str(r)) 

    for q in curs: 
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        query = list(q) 

    curs.close() 

    return query 

 

def runRandomQuery(conn, query): 

    stmt = query[0] 

    curs = conn.cursor() 

    print(stmt) 

    curs.execute(stmt) 

 

qconn = getConnection('tpcc_queries') 

mconn = getConnection('tpcc') 

delayS = 0 

durationS = 300 

 

def main(qconn, mconn): 

    query = getRandomQuery(qconn) 

    runRandomQuery(mconn, query) 

    time.sleep(delayS) 

 

startTime = time.time() 

while time.time() <= startTime + durationS and successCount <= 1800: 

    try: 

        main(qconn, mconn) 

        successCount += 1 

    except: 

        print('--------------- Failed! -----------------') 

        failedCount += 1 

 

print('Success count: ' + str(successCount)) 

print('Failed count: ' + str(failedCount)) 

 

 

 

 

END OF DOCUM ENT. 

 


