
A Novel Method for Calculating Query Hashes

for Improved Query Grouping in Relational

Database Management Systems

Derek Colley and Md Asaduzzaman1

Abstract Database queries are stored and compared by relational database

management systems as hashes, or short unique representations, of the original

query text. This leads to cache misses and increased resource consumption by da-

tabase engines when queries differing only in non-syntactic detail, or queries

which are relationally equivalent, are presented to the query parser. We propose a

new method of structural query decomposition, transforming database queries into

multidimensional adjacency cubes (MACs), allowing the codification of queries

by structure rather than content as currently implemented. We build and test our

solution, demonstrating superior query hash grouping to that currently offered by a

leading relational database platform, and consider the applications of this new

technique.

Introduction

In Relational Database Management Systems (RDBMSs), the plan cache is used

to store hashed database queries and accompanying execution plans [1] for the

purposes of faster query execution performance when recompilations of the que-

ries are avoided. Combined with forced parameterization, this encourages the

maximum amount of query plan cache re-use given any incoming query workload.

However, despite database queries being extrusions of the relational algebra

[2], albeit often with language-specific additions or amendments, a computational

approach is not used when queries are compared to existing queries in the cache.

Instead, queries are treated as if they were natural language constructs. This leads

to inefficiencies; differences in column selection, join construction or even

whitespace within two queries leads to the misidentification of these queries as

separate constructs and plan recompilation can be forced as a result, worsening

Derek Colley (corresponding author), Md Asaduzzaman1

School of Digital, Technologies and Arts, Staffordshire University,

College Road, Stoke-on-Trent, ST4 2DE, United Kingdom

E-mail: derek.colley@staffs.ac.uk

mailto:derek.colley@staffs.ac.uk

2

query performance. When parameterisation is absent, this effect is amplified [1].

This issue is exacerbated by object-relational mapping frameworks which produce

database queries automatically at runtime, often using anti-patterns such as nesting

or row-by-row query production to the detriment of query plan re-use [3, 4, 5].

In this paper, we present a novel method of query representation using a three-

dimensional adjacency matrix to represent structural similarity between objects

within queries, intended as an alternative to the existing hashing and comparison

process within RDBMSs. By using concepts from the relational algebra [2], we

show how similar queries can be grouped by examining the relationships between

objects within the query, in contrast to text comparison, and consequently query

plan re-use can be significantly improved. We test our approach against Microsoft

SQL Server 2017.

Related Work

Relational database queries are structured blocks of text that follow a set of

syntactic rules [6], although RDBMSs diverge from the SQL standard in many

key areas, particularly syntactically. When a query is presented to an RDBMS

from a calling application, it is first treated as narrative text and parsed, then

bound. The algebriser creates a ‘query fingerprint’ – a hash – and checks the plan

cache for the existence of the hash [1]. Should the hash already exist, the next

steps in the query execution cycle are skipped and the execution plan already as-

sociated with the found hash is re-used.

This tokenisation, algebrisation and hashing of the query is not seamless. Mi-

nor variations in query presentation, unrelated to the relational form of the query,

can cause cache misses. The change in use from static, inline queries to dynami-

cally generated queries from ORM frameworks together with in-creases in veloci-

ty, volume and variety [3, 7] increase the heterogeneity of queries presented to the

relational database layer and as such contribute to the deficit in query plan re-use.

The general technique for semantic parsing was introduced by DeRemer [8]

from a seminal paper by Knuth [9] on general LR-type parsers. The ‘LALR(1)’

parser is a simplified left-to-right, bottom-to-top parser of a token stream that does

not require backtracking to apply rules and is memory-efficient. In relational da-

tabases, techniques including Yacc compilers [10] are used to generate parse trees.

The resultant trees are stored in a parsing table for use by the next stage of the

query optimisation process. With minor variations in the entry points for the par-

ser and the resulting data structures, this parsing process is identical across various

database management systems.

Repeated presentations of a query can result in repeated parsing and opti-

misation despite the process having already been followed for antecedent queries

which are structurally, semantically, or functionally identical. The use of a better

query comparison method, one based on computational query representation rather

3

than semantic query representation, has the potential to reduce the proportion of

query recompilations. The ability to identify similar queries yields advantages

such as the re-use of a previously generated execution plan, eliminating the opti-

misation steps and lowering the time taken to process the query, and the ability to

cache the intermediary objects such as the parse tree which reduces the space re-

quired for the plan metadata in memory, increasing memory capacity for other

queries.

In some implementations, queries can also be prepared, or parameterised. The

process of preparing queries means to identify the parameters within the query and

remove them to a separate list of key-value parameter pairs, to be substituted into

the query at run-time. There are advantages to this approach including greater

query re-use and interoperability with wider data processing platforms [11].

However, this approach is dependent on the implementation of the RDBMS. An

additional mitigation is that queries which are frequent often refer to objects which

have their pages stored in a buffer cache meaning a large portion of data retrieval

can take place in-memory without reference to the disk subsystem, significantly

reducing I/O costs and reducing the query execution time to the advantage of the

user.

Checks for query similarity are primitive by design because the query exe-

cution process by necessity must be extremely swift and so an excessive level of

query pre-processing would impact overall query execution time. The limitations

of current approaches in query parsing, storage and recompilation open new ave-

nues for exploring query parsing alternatives and supplementary techniques for

reducing the workload sent to the query parsing process through query pre-

processing.

Methodology

We propose an alternative method of relational query representation, based on

a) identifying the relationships between elements in the query and b) describing

the type of relationship, the whole to form a directed graph. In such a representa-

tion, each object in the query (column name, or table or view name) becomes a

node in the graph, and the relationship type between nodes is categorised as either:

• Membership (column name is a member of a table)

• Intersection (a relationship between two tables, typically an inner or outer

join, in either direction)

• Predication (a condition, particularly when an operator such as =, < or >, is

placed on the relationship)

• Projection (the node is a subset of another node).

Although this structure resembles a parse tree (an acyclic graph), it is con-

structed from the objects and the type of relationship they have with each other,

4

rather than the relational operators alone, and consequently has a different abstract

(and internal) representation.

This directed graph can be represented in terms of the adjacency of the nodes,

in a construct called an adjacency matrix. It can be represented as a three-

dimensional binary adjacency matrix (termed a “multidimensional adjacency cu-

be”, or MAC), which represents the structure of the query in a binary medium.

The i and j axes are comprised of an ordered node list, and the k axis is a type-

representation. We notate |Cx| to mean the node cardinality, or number of nodes,

of any given cube Cx. Thus, any intersection of the three axes i, j and k indicates

a relationship exists and contains the value 1, and all other intersections contain 0.

The result is a multidimensional list. The process is illustrated in Fig. 1.

Fig. 1: Process flow of the query transformation process .

The process is split into five distinct steps.

Parsing: Using linear tokenisation, we split the query into distinct atomic ele-

ments, or words. Formally, we state that this parsing process P takes as input a

query Q which consists of a set of words w. We apply a series of functions f over

combinations of w in Q to produce a set S of tuples t, of which each t consists of

exactly three values: t1, t2 and t3 – two objects, and a type description derived

from the purpose of the object pair in the query (1).

1 2 3

() and

, (, ,)

P f w Q S

S t S t t t t

=   →

=   = (1)

Codification: We codify each object and each operator with a shorthand nota-

tion. We replace literals with a single non-unique shorthand placeholder. We

state that for all object members (t1, t2) of set S, we replace each t1, t2 with a codi-

fication of t1, t2, designated c(t1) or c(t2). t3 is left intact (2):

5

1 2 1 2 21 3 3, , (), (),S t t S t c t t c t t t=   = = = (2)

Classification: For each tuple in S, we classify each object o1 in each tuple as

either a selection, a member, a predicate or an intersection on object o2 in the tu-

ple. Each of these terms are used in their relational or set-theoretic sense; a selec-

tion is 𝛔 of values over a relation R; a member is an element x that belongs to a set

A such that x ∈ A; a predicate is a condition placed on a selection or more formal-

ly, the expression that is φ in the selection 𝛔 of values over a relation R subject to

the propositional expression φ; and an intersection is a natural join ⋈, theta join θ,

semi-join ⋉ and ⋊, left-outer and right-outer join ⟕ and ⟖ (we exclude the anti-

join ▷). The output is a temporary set, which we then order alphabetically by ob-

ject code and deduplicate. This set, designated K, consists of a distinct list of ob-

ject pairs (o1, o2) and a classification c arranged as a tuple (3).

 (3)

Matrixification: The matrixification function f(K) arranges each object on vir-

tual X, Y and Z axes with every object appearing on both X and Y axes in every Z

slice. The Z axis has a cardinality |Z| of 4, consisting of a slice for each classifica-

tion, selection, membership, predication and intersection. For every relationship

on axes X, Y and Z, we mark the value at the intersection with the value 1. We

mark all other intersections with the value 0. The output is a 3-dimensional matrix

M which we represent as two matrices below, showing axes XY and YZ (4).

[0 1] [0 1] [0 1] [0 1]

[0 1] [0 1] [0 1] [0 1]

(), such that:

() ordered set of and

() () and

| ()| | | | ()| | | and

| ()| 4

such that the values in M consist of (XY, YZ):

M f K

M x o K

M y M x

M x K M y K

M z

M

   

   

=

=  

=

=  =

=

=

 
 
 
 
 

(XY) (YZ)


 
 
 
 

 (4)

6

Compression: We combine the ordered matrix of objects (in shorthand nota-

tion) in a string format and the resulting binary expression, read left-to-right (X),

top-to-bottom (Y), front-to-back (Z) as a hexadecimal value (5).

' m , (())S M hex concat m=  
 (5)

Implementation

We began by creating a sample schema based on the entities of a Sale, a Prod-

uct, and a Customer. Sale was split into a strong entity and a weak entity, reflect-

ing that SaleLineItem is a hierarchical child of Sale, the latter termed SaleHeader.

Our experiments were carried out using the Transact-SQL syntax on Microsoft

SQL Server 2017 Developer Edition, with our algorithms coded in Python 3.8.2.

We wrote an implementation of the MAC generator which ingested a single SQL

query and outputs a hexadecimal query hash calculated from a multidimensional

list object containing the binary intersections of each tuple, as described in our

methodology.

To test the process, we generated 10,000 valid queries against our sample

schema. Our generator used the schema definition and created queries subject to

the following limitations, which match the limitations of our cube generator im-

plementation: up to 2 joins, 12 predicates (including primitives and Booleans), 10

columns in the selection, excluding subqueries, CTEs, aggregates and side-

effecting functions (see Future Work). Literals were randomly generated. We

then ran timing tests (determining MAC execution speed); cache tests (determin-

ing existing database optimiser efficiency in grouping queries); MAC generation

tests, determining the efficiency of our process in grouping queries) and pair sam-

pling tests (determining the validity of our process in grouping relationally-

identical queries together). Our results follow.

Results

Timing test: We iterated through each of the 10,000 queries in the pool using

the MAC generator, capturing MAC process execution duration per query. We

switched off console output to ensure parity with the database engine, where no

console output is generated on query parsing.

 We found that 10,000 executions were successful (100.0%). Of these,

48.86% completed in under 0.5ms; 71.19% completed in under 1.0ms; 91.53%

completed in under 1.5ms; 95.13% completed in under 2.0ms with all outliers tak-

7

ing no longer than 4.0ms to complete, comprising the remaining 4.87% of the to-

tal. The mean average time to complete was 0.6ms (median 0.9ms, which may be

more accurate given a standard deviation of 0.65ms, or 1.1 standard deviations

from the mean, with variance of 0.42ms). Our results are shown in Fig. 2.

Fig. 2: Results from timing test

Cache test We next selected 1,000 random queries from the pool and exe-

cuted them. We used a subset since Microsoft SQL Server ages out queries from

the cache rapidly, depending on a proprietary algorithm; through trial-and-error

we have found a range of 1,000-1,500 to fit comfortably within the cache, follow-

ing a cache flush, before removal takes place (given no other load).

We measured the number of non-distinct query representations retained in the

cache. We were able to retrieve 1,000 queries (100%) from the cache as expected.

We found every query had a distinct SQL handle, plan handle and query hash.

This meant that during execution, even with forced parameterisation switched on,

SQL Server was unable to group or classify queries which, relationally, are iden-

tical (different column arrangements; different predicate orders; different literals;

inclusion of whitespace and/or carriage returns). For the purposes of parsing and

recompilation, each query had an independent hash generated and there were no

instances where a query handle or query hash were shared, or duplicated, by any

given SQL query. Every query hash was distinct and the efficiency of the data-

base query engine at determining like queries was therefore zero.

MAC generation test We next tested the efficiency of our new process to de-

termine whether it was able to classify and group queries using the structural ap-

proach. We took a different random subset of 1,000 queries from the query pool

and iterated through them, storing the generated hash of each query (the SQL

8

Server equivalent of the query hash). We repeated our analysis of the hashes to

determine if any grouping took place. We found the MAC classifier was able to

group 1,000 queries into 112 distinct groups based on the structure of the query.

Paired sampling test We examined the grouped queries and sampled pairs

from each group. Each pair of queries resulted in the same MAC hash. We exam-

ined every hash where at least two queries had the hash – a total of 80 hashes,

from 112 (71.4%). For each of these hashes, we selected two queries at random

and compared them manually to determine if they were truly relationally identical

or whether our process had miscategorised them, and if so, in what manner. We

classified the differences into 9 categories as shown in Table 1.

We found 27 pairs of 80 (33.6%) of queries that the MAC process grouped

were both relationally and structurally identical; selection ordering, predicate or-

dering and predicate literals are disregarded for set equivalence as per Codd’s

model of relational algebra [2]. Of the remainder, 10 of 80 (12.5%) had hash col-

lisions, resulting in set inequivalence; a further 35 (43.8%) differed on join direc-

tion; with the remainder having identical hashes for different predicates, also re-

sulting in structural difference, or set inequivalence. The overall success rate for

the MAC generator in correctly grouping queries was therefore 33.6%, in compar-

ison to Microsoft SQL Server, which was unable to group queries at all (0.0%).

9

Table 1: Results from paired sampling tests

Conclusions and Future Work

In answer to the increasing variety and volume of queries presented to the rela-

tional database perimeter, we proposed a novel method of query deconstruction

using structure rather than semantic content. By graphing query structure as a

multidimensional adjacency cube (MAC), we show how queries that differ only in

predicate ordering, trivial construction differences such as the presence of arbi-

trary whitespace, and which differ in literals can be grouped and hashed.

We built and demonstrated the MAC generator against a realistic 3NF schema.

We wrote and executed 10,000 queries, noting the query and plan representations

in Microsoft SQL Server. For a subset, we noted how each query had a distinct

representation and grouping was only successful at the plan hash stage. We noted

the RDBMS was unable to group any SQL query hashes, whereas our approach

demonstrated grouping of 1,000 queries into 112 groups with a reasonable degree

of overall success (33.7%) in correctly classifying like queries.

This ability to structurally group queries has an abundance of potential applica-

tions. Future work in this area includes development of the MAC parser to solve

the join differentiation and small MAC group collisions observed; extending de-

sign to subsets, aggregates and the full SQL syntax; including the full range of re-

lational algebra and applying this technique to query performance optimisation,

10

for example the ability to compare queries using this technique to automatically

select appropriate sub-schemas or alternative data partitions based on the perfor-

mance of previously-run queries that are structurally similar.

References

[1] Delaney, K, Beauchemin, B, Cunningham, C, Kehayias, J, Nevarez, B and Randal, P (2013)

Microsoft SQL Server 2012 Internals, O’Reilly Media, p.703-715.

[2] Codd, E F (1970) A Relational Model of Data for Large Shared Data Banks. Communica-

tions of the ACM, 13:6, p. 377-387.

[3] Ireland, C, Bowers, D, Newton, M and Waugh, K (2009) A classification of object-relational

impedance mismatch. First International Conference on Advances in Databases, Knowledge,

and Data Applications, p. 36-43. https://doi.org/10.1109/DBKDA.2009.11

[4] Chen, T H, Shang, W, Jiang, Z M, Hassan, A E, Nasser, M and Flora, P (2014). Detecting

performance anti-patterns for applications developed using object-relational mapping. Pro-

ceedings of the 36th International Conference on Software Engineering, p. 1001-1012.

https://doi.org/10.1145/2568225.2568259

[5] Colley, D, Stanier, C and Asaduzzaman, M (2020) Investigating the Effects of Object-

Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping Frame-

works, Journal of Database Management, 31:4, p.1-23. http://doi.org/

10.4018/JDM.2020100101

[6] International Standards Organisation (ISO) (2011) ISO/IEC 9075-1: 2011: Information

Technology - Database Languages - SQL Part 1: Framework (SQL/Framework)

(JTC1/SC32).https://standards.iso.org/ittf/PubliclyAvailableStandards/c053681_ISO_IEC_90

75-1_2011.zip. Accessed 06 Feb. 2021.

[7] Khan, M, Uddin, M, and Gupta N, (2014) Seven V’s of Big Data; Understanding Big Data to

extract value. Proceedings of the 2014 Zone 1 Conference of the American Society for Engi-

neering Education, p. 1-5. https://doi.org/10.1109/ASEEZone1.2014.6820689

[8] DeRemer, F L (1969) Practical translators for LR (k) languages (Doctoral dissertation, MIT).

Available at: https://core.ac.uk/download/pdf/81140495.pdf. Accessed 06 Feb. 2021.

[9] Knuth, D E, (1971) Top-down syntax analysis. Acta Informatica, 1:2, pp.79-110.:

http://dcc.ufrj.br/~fabiom/comp20122 /knuth_topdown.pdf. Accessed 10 Feb. 2021.

[10] Johnson, S C (1975) YACC: Yet another compiler-compiler. Bell Laboratories.

http://web.wlu.ca/science/physcomp/ikotsireas/CP465/W3-BNF-

LEX/YACC/Yacc_Introduction.pdf. Accessed 13 Feb. 2021.

[11] Meijer, E, Beckman, B and Bierman, G (2006). LINQ: reconciling object, relations and

XML in the .NET framework. Proceedings of the 2006 ACM SIGMOD International Con-

ference on Management of Data, pp. 706-706. https://doi.org/10.1145/1142473.1142552

