
DOI: 10.4018/JDM.2020100101

Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

Investigating the Effects of Object-
Relational Impedance Mismatch 
on the Efficiency of Object-
Relational Mapping Frameworks
Derek Colley, Staffordshire University, UK

Clare Stanier, Staffordshire University, UK

Md Asaduzzaman, Staffordshire University, UK

ABSTRACT

The object-relational impedance mismatch (ORIM) problem characterises differences between the 
object-oriented and relational approaches to data access. Queries generated by object-relational 
mapping (ORM) frameworks are designed to overcome ORIM difficulties and can cause performance 
concerns in environments which use object-oriented paradigms. The aim of this paper is twofold, 
first presenting a survey of database practitioners on the effectiveness of ORM tools followed by an 
experimental investigation into the extent of operational concerns through the comparison of ORM-
generated query performance and SQL query performance with a benchmark data set. The results show 
there are perceived difficulties in tuning ORM tools and distrust around their effectiveness. Through 
experimental testing, these views are validated by demonstrating that ORMs exhibit performance 
issues to the detriment of the query and the overall scalability of the ORM-led approach. Future work 
on establishing a system to support the query optimiser when parsing and preparing ORM-generated 
queries is outlined.

Keywords
Database Performance, Object-Relational Mapping (ORM), Performance Tuning, Query Performance, Relational 
Databases, Structured Query Language (SQL)

INTRODUCTION

Object-relational impedance mismatch (ORIM) occurs when object-oriented application development 
– a hierarchical paradigm - meets the relational database layer, a set-based paradigm. ORIM is 
categorised into several layers of granularity, from concept to language (Chen et al., 2014; Ireland 
et al. 2009). In implementation terms, ORIM means overcoming the mismatch between invoking a 
method within an application to generating the Structured Query Language (SQL) that is required by 
the method. Using inline SQL can meet this need, but this method is intolerant of schema changes and 
can introduce security flaws, such as injection. Using a stored procedure layer as an alternative can 
help mimic the object-oriented model in the database, but comes at the cost of moving the application 
logic into the data layer, tightening the coupling between these two layers, potentially moving the 
logic out of source control and necessitating SQL skills to make changes in the future. The need to 
address relations as objects in the application-database interface instead bred a third solution, a class 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

2

of tools known as object-relational mapping (ORM) frameworks, designed to bridge the gap between 
object-oriented method calls and the generation of Structured Query Language (SQL) queries. ORM 
frameworks differ in specifics, but typically store an internal data model and use rule bases and 
heuristics to generate SQL from this data model in response to application requests. The resultant 
SQL is presented to the relational database management system (RDBMS).

Relational databases are data stores that operate according to the long-established principles 
of relational algebra (Date, 1990; Astrahan et al., 1976; Held, Stonebraker & Wong, 1975; Codd, 
1974; Stoll, 1963). In contrast to document-style databases, storing unstructured or semi-structured 
attribute-value pairs, relational database design is based on relations, or sets of tuples of related 
values, which are stored in tables, linked with keys and queried with SQL. It is claimed that 4 of the 
top 5 most popular database tools in recent use are based on the relational model (Solid IT, 2018).

This paper investigates whether ORM frameworks are well-suited to producing SQL queries, 
given that ORM tools are, themselves, object-oriented constructs; more specifically, whether the 
mismatch postulated by ORIM can be observed in the methods and outputs of ORM tools as measured 
by relative performance; in essence, are ORM tools producing efficient SQL?

We investigate this aim in three ways: firstly, through a literature review of ORIM and associated 
relevant topics; secondly, through the administration of a survey of practising database professionals 
aimed at gathering expert opinions on the perceived effectiveness of ORM tooling, using thematic 
analysis to construct appropriate narratives; and thirdly by investigating, through empirical 
experimentation and using industrial software, the operation of ORM-generated performance impacts 
on a relational database using a benchmark data set, extending our prior research (Colley, Stanier 
& Asaduzzaman, 2018) in this area. By combining all three approaches, we validate whether the 
opinions of our survey participants are borne out by the findings of the ORM testing; whether the 
results of the ORM testing concord with the findings of other researchers; and to establish whether 
ORIM is a solved problem through the use of ORMs, or whether ORIM at the application-database 
interface remains a current and relevant issue, to be addressed by future research.

The remainder of this paper is structured as follows. The Literature Review section defines ORIM 
in more detail, summarises prior research into the issue, and describes how the issue can be manifested 
in relational database systems. The Problem Investigation section describes the investigation; split 
into two sections, the Domain Expert Views sub-section explains the methodology and process of 
gathering domain-expert views and presents the results; and the Empirical Investigation sub-section 
describes the experimental investigation into the impacts of ORM-generated queries and the results 
of this work. The Conclusion section draws together these results in the context of existing research, 
and Future Work discusses ideas for further research in mitigating ORM-generated query performance 
issues and future strategies for addressing ORIM in the data layer.

LITERATURE REVIEW

The need for a mechanism to translate from object-oriented programming methodologies to the 
relational database layer is relatively new, gaining momentum since only the mid-1990s (compared 
to the development of database platforms from the late 1960s). Prior to the advent of object-oriented 
programming, functional programming, characterised by linear program flow and fixed application 
code, allowed for SQL to be written as part of the application. As object-oriented programming 
became more prevalent throughout the 1990s, researchers started to recognise that what would become 
known as object-relational impedance mismatch (ORIM) was a real concern when using a relational 
data layer, and started to create solutions – precursors to today’s object-relational mapping (ORM) 
frameworks – to address the issue. Durand et al. (1994) were one of the first to do so, with the ‘Object 
View Broker’ – a primitive ORM that stored object-oriented views of relational data; in the same year, 
Kemp et al. (1994) experimented with storing object-oriented data in relational data stores, and created 
what they termed an ‘object/relational mapping’ methodology to do so, based on object-oriented data 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

3

architecture (Kim, 1990; Banerjee, 1987). This decade proved to be the beginning of the development 
of ORM tools; Orenstein (1999) presents an ORM built for Java, predating Hibernate; Jungfer et al. 
(1999) note how coding ‘Interface Definition Language’ components to communicate with relational 
databases is ‘tedious’ and propose a new language and structure to effect this semi-automatically; 
Mlynkova and Pokorny (2004) are among the first to consider the use of XML as a data mapping 
layer between the application and the relational layers (a method used today in some ORMs).

ORMs are designed to mitigate many of the facets of the ORIM problem by the provision of 
an interface from the application layer to the data layer. Despite this, ORMs are reported to have 
pervasive performance issues which arise as an artefact of their design. Karwin (2017) labels some 
of these issues ‘anti-patterns’; these are undesirable behaviours of the query or queries that exhibit in 
several different ways. In effect, these anti-patterns are manifestations of object-relational impedance 
mismatch in the ‘paradigm’ and ‘language’ classes (Ireland et al., 2009).

Karwin discusses SQL anti-patterns in general but specifically identifies issues with 
ORM-generated queries. Models (in the Model-View-Controller (MVC) arrangement) are very 
closely coupled with database schemas; this means changes to the schemas can result in model 
incompatibilities. Another related problem is inheritance; if a class is given create, update and insert 
capabilities, subclasses can inherit from this class which can allow direct access to the database, 
reducing cohesion in the applications.

It was demonstrated by Chen et al. (2014) that these anti-patterns, later identified by Karwin 
(2017), can include the ‘N+1’ problem; this is where a query is implemented as a series of row-by-row 
implementations. Although this has the benefit of being memory-efficient in that the data ‘in-hand’ 
in each execution loop is a small subset of the whole, from a database performance perspective this 
can produce an unwanted number of table or index lookups (or table/index scans, or index seeks) 
and can lead to an exponential overhead in query processing time and resource consumption. By 
the tenets of relational theory, it is accepted that set-based queries are preferred over object-based 
accesses due to better efficiency and lower query cost (Karwin, 2018; Cheung et al., 2016; Fritchey, 
2017; Chen et al. (2014); Date, 1990).

Chen et al. (2014) also describe the eager fetching problem (‘excessive data’) common to ORMs 
where extra columnar data is brought through to the application from within the query then discarded 
when the results are compiled, and demonstrated a 71% increase in performance for a set of queries 
when mitigating this anti-pattern through experimentation on a standard data set. Cheung et al. (2016) 
repeated this finding and reported the details of how ORMs can hide this behaviour from the user, for 
example by using pre-fetching to group SQL calls, with mixed results (Ramachandra and Sudarshan, 
2012). The consequences of pre-fetching data can include slower execution time, increased system 
resource use, and more data traffic - the manufacturers of ORM tools also report related adverse 
behavioural patterns with their tools; Microsoft Corporation (2009), the creator of Entity Framework, 
the dominant ORM tool in the .NET application stack, describe 8 different performance considerations 
that negatively impact query performance (7 of which occur before the query is executed). They 
also discuss nested queries and offer commentary on the impacts of returning large data volumes on 
temporary data stores and overall execution time.

Depending on perspective, the implementation of ORMs has been a mixed success. For application 
developers, ORMs can abstract away the maintenance of hardcoded SQL, simplifying development. 
Calling ORM-supplied methods rather than executing stored procedures or running inline queries 
is convenient and compatible with object-oriented programming languages and fits into the current 
zeitgeist of Agile, continuous-integration led application development. However, one important 
drawback of the model-based approach is the maintenance overhead involved in keeping the conceptual, 
or logical, data model and the physical data model in synchronicity, which can manifest in difficulties 
maintaining the code base (An, Hu & Song, 2010).

From the perspective of the database administrator, ORMs can present serious performance 
issues. Replacing static queries with dynamically-generated queries has inherent problems; the 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

4

aforementioned N+1 and eager fetching problems (Microsoft Corporation, 2009; Astrahan et al., 
1976); larger execution plans, reducing the effectiveness of the plan cache; excessive recompilations 
due to lack of parameterisation; the promotion of less well-performing structures like nested queries 
at the expense of set-theoretic constructions such as JOINs; the avoidance of advanced language 
constructions which could aid efficiency, such as window functions; and difficulty diagnosing access 
patterns (He and Darmont, 2005).

Fundamental construction issues at the heart of ORM development that stem from the formal 
classification of object-relational impedance mismatch continues to be a contemporary issue. Torres 
et al. (2017) present a survey of nine different types of ORM tool and relate the characteristics of each 
tool to the underlying design patterns in the literature. Their survey has some notable outcomes; first, 
that every tool they assessed was found to be implementing strategies to mitigate the ORIM problem 
(which they term IMP – Impedance Mismatch Problem) and that those strategies map to logical design 
patterns. This implies that there is no single ORM product which is significantly better or worse at 
dealing with ORIM, only that each product uses the same underlying methodologies to implement 
a partial solution, which in turn implies that a complete solution has yet to be found. Although they 
explicitly exclude the ability of the ORM to generate SQL queries from their assessment, their 
findings show that ORM tools are merely implementations of a common set of techniques to work 
around ORIM, meaning that queries that result from such tools will share the same characteristics 
preventing them from being completely efficient against database schemata.

There is also evidence in the literature that practitioners are still finding ORM tools can be 
unfit for purpose. Vial (2018) defines ORMs and highlights lessons learned about their effective 
implementation. Many of his findings echo earlier literature (ORMs have fetching problems which 
bring about the N+1 pattern, as per Astrahan et al., 1976); and the suggested mitigations include 
deferring logic back to the database in the form of computed columns and stored procedures, or 
overcoming the problem by moving databases in-memory. This is an acknowledgement that from a 
purist perspective, ORMs are not providing satisfaction in the field since the mismatch issues continue 
to be felt and strategies developed to work around the problems that ORMs present.

ORMs, however, continue to be a popular tool irrespective of performance problems. Ismailova 
& Kosikov (2018) go so far as to suggest that the relational element of the object-relational mismatch 
could be at fault; that ORMs lack an overarching conceptual basis that is not rooted in the relational 
model, and that a reassessment of the relational model (moving from Boolean algebra in set theory 
to Stone algebra) might be in order for ORMs to become more generalised. Although this appears 
to be a singular view, some responsibility for mitigating negative performance effects of ORMs and 
ensuring queries can be executed in a timely and efficient manner must also fall upon the relational 
database management system. During query processing, queries are disassembled, or parsed (Pachev, 
2007), bound to objects, arranged into an execution plan and executed against a base schema. Although 
the optimiser is able to mitigate some effects of inefficient SQL query constructions through the 
simplification of queries to a parse tree and a collection of heuristics, it is evident through these 
repeated findings in the literature that the cost-based optimiser was not designed to deal with the 
query structures and sub-optimal performance behaviours associated with ORM-generated queries.

An alternative approach is to modify the relational schemas to fit the demands of the 
ORM-generated query, rather than attempt to modify the queries to fit the underlying relational 
schemas. Bolloju (1997) was an early identifier of this approach, and investigated whether schema 
denormalisation was an effective method for better object-relational interaction. Denormalisation is 
the process of rearranging a logical database schema to reduce the number of tables and so facilitate 
queries with fewer JOINs – for ORMs, which tend to produce nested queries rather than use JOIN 
syntax, this is beneficial for performance, but can lead to undesired outcomes; Bolloju (1997) identifies 
excessive fragmentation, but arguably this proceeds from the physical storage of the data, rather than 
the logical; but also identifies issues with integrity (maintaining data integrity in denormalised tables 
which allow duplicates is problematic) and flexibility (normalised database schemas are built to scale 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

5

well). Data clustering is proposed as an alternative, where data is rearranged to better resemble the 
object-relational hierarchical model of data. There is evidence of research into the logical mapping of 
‘metaschemas’ – methodologies for schema creation – in both the object and the relational domains 
(x, x) which provide the conceptual foundation for remapping schemas (Halpin, 2002).

He (2005) identifies changing access patterns in databases as a driver for performance issues. This 
is particularly prevalent in queries generated by ORMs, which by their nature can be unpredictable, 
generated automatically and prone to change between iterations or generations of subsequent queries. 
Several RDBMS platforms support plan caching; this is defined as the storage of the execution plan 
for a query for subsequent re-use (removing some of the cost of plan generation) (Microsoft, 2019) 
and is achieved by the substitution of string literals for parameters. ORM-generated queries can fill 
an execution plan cache through the over-generation of similar query plans that cannot be grouped in 
this fashion and as such fill the cache, necessitating the generation of new plans on every execution 
not just for the ORM-generated queries in hand but for other queries being run on the same database 
instance.

The future for ORMs as a data layer between object and relational paradigms is unclear. Although 
the tools are constantly improving, the anti-patterns associated with ORM tooling persist. In the 
remainder of this paper we seek the expert opinions of database practitioners on the effectiveness 
of ORM tools, and experiment upon a benchmark data set to attempt to replicate some of the issues 
reported in the literature on industry-standard tools.

PROBLEM INVESTIGATION

The investigation of the problem was split into two halves; first, through a survey of database 
practitioners with a focus on the uses of ORM frameworks, performance tuning in database 
environments, and the future of relational database query performance tuning. Secondly, an experiment 
to determine the performance outcomes from a series of scenario-based queries was designed to 
compare and contrast the relative performance of queries written by a specialist and queries produced 
by an ORM tool. The results of both investigations are presented in this section.

Domain Expert Views
Given prior research into object-relational impedance mismatch, this section aims to investigate if 
ORIM presents practical issues, and if so the extent of these issues, by the administration of a survey 
focused on object-relational mapping tools, delivered to an audience of database practitioners.

In this section, evidence is sought as to whether ORM-produced queries, and ORMs in general, 
cause performance issues in real-life database environments. A survey consisting of 18 questions for 
an audience of database practitioners was designed, piloted and delivered with the intent to investigate 
several topics: the proportion of respondents who use an ORM, or use or administer database systems 
with ORM inputs; an estimation of the proportion of query traffic to relational database systems 
originating from ORMs; the experiences of the respondents in working with ORM query performance 
tuning, schema management, big-data-fed database systems and non-relational data stores; the beliefs 
of the respondents in relation to the effectiveness, compatibility and integrative ability of ORM 
tooling; and the opinions of the respondents on ORM-related paradigms such as object-oriented 
programming, Big Data, the Agile software programming methodology; object-relational (hybrid) 
systems and automation.

Design
The survey was designed to capture results using a mixed-methods approach. The questions were 
structured primarily using Likert-scaled questioning, with a mixture of qualitative free-form textual 
information to gather further details without placing constraints on the responses of the participants. 
This approach invited respondents to express their level of agreement or disagreement with a number 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

6

of database-specific statements on a 5-point Likert scale with an additional neutral option added (to 
allow null answers to be statistically disregarded).

Delivered via the instant-messaging platform Slack to a database-specific interest group, the 
survey returned 19 responses. Responses were analysed as indicative samples of opinion using 
qualitative analysis, with free-text commentary from the respondents treated as significant and 
central contributions. As an alternative, the methodology of thematic analysis (Clarke & Braun, 2013; 
Aronson, 1995) is used to group the response data into categories and observations, create themes 
and formulate summary narratives.

Checks and balances were built into the survey design. Given that the research questions were 
well-defined before the survey was issued, some risk existed that confirmation bias would skew the 
results if the questions were put in such a way as to seek affirmation of a pre-defined perspective. 
In mitigation, a mixture of positive and negative question forms was used when positing statements, 
and at several points, questions were mirrors or alternative phrasings of others already answered. 
This use of cross-checking was designed to measure validity, and it was found to be effective during 
analysis of the resulting data with few contradictions in the results.

Additionally, the survey underwent a pilot stage after which improvements were made to the 
internal consistency of the survey, refinement of the topics and refinement of the terminology. The 
survey was designed to include additional free-form text fields to ensure the capture of meaningful, 
context-aware qualitative information to add value, hence the use of thematic analysis. This approach 
was successful in uncovering additional information, useful when constructing the thematic codes.

Results and Analysis
There are several commonly-accepted stages of thematic analysis as defined by Clarke and Braun 
(2013), none of which are prescriptive but provide a coherent process to analysing qualitative data. 
The survey was designed to capture both quantitative and qualitative responses and was analysed by 
using all six stages of thematic analysis, from data familiarity through to thematic mapping.

The preliminary stage, in accordance with Clarke and Braun’s approach, focuses on semantic 
analysis – the extraction of the key information about what is said, or written, rather than latent analysis 
of the underlying meaning. The responses from the survey were analysed in this way, resulting in a 
preliminary codification of the data.

In the next phase, refinement of the codes and re-arrangement of the themes took place in order 
to simplify the findings. This was accomplished by de-duplicating codes, re-arranging them into a 
different configuration of themes, and rephrasing the codes to remove unnecessary detail. At this 
stage, latent analysis began to take prominence over semantic analysis. Table 1 shows the outcome 
of this phase.

Next, by examining the codification and theme groupings, simplifications and linkages of the 
concepts resulted in the interpretative creation of a thematic map. Links are drawn between concepts 
to show the interplay of the themes. Figure 1 shows the thematic map with themes as ellipses, sub-
themes as rounded rectangles, and the links and insights associated with them.

The final stage was to construct narratives from the thematic map, using the notarised codes as 
supporting material. These narratives are presented below, and draw from the codifications, thematic 
map and the supporting literature.

Theme - ORM Use
The results showed that ORM uptake amongst organisations linked to respondents in the survey 
is approximately 60% and of those, around 25% of traffic is thought to originate from ORM tools. 
Consequently, ORMs are responsible for a sizable minority of query traffic. ORMs are held to be 
generally compatible with database scalability designs such as normalisation, but notably incompatible 
with some features of the RDBMS, such as re-use of plans within the procedure cache, good matching 
with indexes, and adherence to query structures that create efficient execution plans (such as JOINs).



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

7

Table 1. Final codification of the survey data

ORM Use Negative ORM Behaviour

Minority proportion of query traffic generated from ORMs Parameter sniffing

ORMs not used across all organisations Poor execution plans

Big data performance tuning not integral part of roles Eager fetching

Compatible with scalable schema designs Procedure cache misuse

Difficult to reproduce performance issues N+1 row fetching

Challenges when designing against ORMs Indexes not considered or supplied

Lazy loading

Education, Awareness and Perception Nested queries

DBAs have fewer skills in big data administration No contextual awareness

Lack of awareness in ORM internals among professionals Future Outlook

Lack of awareness of native database tools among 
developers

Lack of belief in ORMs as viable future technology

Traditional tuning methods well understood Automation believed to be beneficial, with caveats

ORMs perceived as difficult to tune effectively Lack of belief that automation of query tuning is 
achievable

Perception that ORMs exhibit poor performance Performance as important to viable future DB systems

ORM query tuning perceived as difficult Flexibility is less important than other components

Figure 1. Thematic map of survey results



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

8

The use of ORMs could be evidence that tuning databases and database queries is difficult, with 
the path of least resistance seen as the use of ORMs to abstract query design to an interface layer, 
although this finding is countered by some evidence from the comments received in the survey that 
there are design and interaction difficulties inherent when interfacing with ORMs, backed up with 
the paradigmatic differences outlined by Ireland et al. (2009). The difficulties of tuning ORMs is 
reinforced by a general perception amongst practitioners (67% detracting views) that this is the case, 
alongside the negative consequences (anti-patterns) that arise when using them.

Theme - Education, Awareness and Perception
There is some evidence of the view that the perceptions of ORMs as being difficult to tune are 
reinforced by a lack of awareness of how ORMs operate, or how they are configured, and that mutually 
the lack of awareness and education (of both administrative practitioners and users, or developers) 
contributes to the misconfiguration of ORMs – 82% of respondents had 3 or more years of experience, 
but only a third use ORMs regularly in their roles. There is a widespread perception that ORMs cause 
negative performance implications evidenced in both the free-form text responses and the statistics 
(no respondents agreed that ORMs were straightforward to tune), with numerous examples provided, 
and this could contribute to the minority use of this technology.

The responses suggest that the proliferation of ORM tools is in part consequential to a lack of 
awareness amongst the development community of the native tooling available within relational 
database management systems; for example, the use of stored procedures as interfaces, or queue-
based messaging systems built into the product suite. However, this view could be biased by a 
cultural perception, evidenced in literature (Ambler, 2018; Ambler, 2008), of a disconnection between 
development and administrative technical communities, manifest by the administrative audience of 
the survey.

Theme - Negative ORM Behaviour
The chief finding was that query anti-patterns are held to be the causes of poor query performance 
in the database layer, and that this is exacerbated, with reference to the other themes, by a lack of 
awareness in database performance optimisation amongst developers, by lack of awareness of the 
native features of RDBMS systems, and by the difficulty of tuning ORM tooling. The exhibited (or 
perceived) behaviour of the ORM tools correlated with a generally pessimistic view of the role of 
ORMs in the future of database interaction, although contradicted somewhat by support for further 
automation. It is noteworthy that although 57% of respondents agreed automation had a role in the 
future of database performance tuning, only 8% (2 respondents) agreed that ORMs formed part of 
that role.

Theme - Future Outlook
Automation of query- and database performance tuning was suggested both by the measured question 
responses and by ad-hoc suggestions in free text responses, building on prior work in the literature 
addressing more effective database workload management (Niu, Martin & Powley, 2009). It was felt 
that the future of performance tuning was underpinned by automation, although emphatically not by 
ORMs. This suggests that ORMs are perceived to have reached a peak performance level, and that 
the future of database interaction may lay in a different direction.

Several core concepts, such as performance, confidentiality, availability and flexibility were 
rated for importance on a scale of 1-10, with 10 as the most important. One notable result was that 
performance was rated at 8 out of 10, and flexibility at 6 out of 10, indicating performance to be a 
more important issue than flexibility, despite a flexible approach being desirable to deal with ORM-
related queries.

In conclusion, the survey indicated that ORMs are distrusted among database practitioners; 
that there is a perception, backed by anecdotal evidence, that ORM tools create performance 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

9

tuning problems; that there is an appetite for more automation in performance tuning and database 
management; that practitioners felt there is a lack of awareness among developers around effective 
ORM use; and that ORM uptake is significant enough in industry for ORM-generated query tuning 
to be an important and timely research issue.

Next, an investigation was carried out into whether performance issues reported by the survey 
can be replicated through experimentation with an industry-standard ORM tool.

Empirical Investigation
The purpose of the experimental validation is to triangulate upon the findings of the survey, particularly 
around the finding that practitioners experienced performance issues when dealing with ORM-
generated queries. We investigate whether ORM tools may generate queries which have adverse 
performance effects when compared to queries written by a subject matter expert.

Test Data
For testing, the El Nino data set from the Pacific Marine Environmental Laboratory in Seattle, 
Washington, USA (Pacific Marine Environmental Laboratory, 2018) was chosen as it contains a 
selection of multivariate data that lends itself to reformatting without loss of integrity and is recognised 
as a benchmark data set used for data mining (Bay et al., 2000), ensuring repeatability. This data set 
contains weather data readings recorded by a series of 70 buoys spread across the Atlantic Ocean 
between 1980 and 1998 and is presented as a single comma-separated values file with 178,080 rows 
and 2,136,960 data points spread across 12 attributes.

Configuration Methodology
Data were imported from a comma-separated format to a single table in Microsoft Azure DB, then 
normalised to 3NF to provide the advantage of simulating multi-table queries, and each column was 
assigned an appropriate data type. For the ORM layer, Python was configured with the Django web 
framework which includes the ORM tool Django ORM. The package django-pyodbc-azure was 
used for Azure DB database connectivity and a new model was generated from the 3NF schema. A 
new property and function were created for the distance measurement required by one of the query 
objectives, detailed in the discussion of query objective O5.

Aim, Objectives and Variables
The aim of this set of tests is to examine the differences between queries generated by a subject 
matter expert and queries generated by an ORM tool, and note which, if any, structural anti-patterns 
(Karwin, 2017; Ireland et al., 2009) are observed.

The objectives of this experiment were to determine whether:

1. 	 The performance of ORM-generated queries tends to be inferior to manually-written queries 
when comparing execution speed, resource consumption and execution plan complexity;

2. 	 ORM-generated queries demonstrate poorer relational query construction than queries constructed 
by a subject matter expert; specifically, whether ORMs tend to generate queries which have 
redundancies, are loop- rather than set-based, or display other inefficient characteristics as 
detailed elsewhere in the literature.

The evaluation criteria used were based upon quantifiable and measurable instruments, and were 
chosen as accurate representations of how queries are assessed by professionals (Fritchey, 2017). 
Each criterion is composed of an independent variable (‘measure’) whose value changes upon the 
manipulation of the dependent variable, and a description indicating how the criterion should be 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

10

assessed (‘comparative rule’). The criteria are also defined and described fully in Fritchey (2017) 
and summarised in Table 2.

The validity of objective 2, whether ORM-generated queries exhibit anti-patterns, is addressed 
through the comparison of each SQL query pair, noting any anti-patterns that emerge, cross-referencing 
against the performance analysis where appropriate and sources of query anti-patterns in the literature, 
and cases where query functionality is missing in the ORM.

The objectives described in Tables 3 to 7 represent queries against the data and are rendered firstly 
in English, then as a relational SQL query written by a practitioner; as a Django ORM method call; 
and as one or more relational SQL queries produced by Django ORM as a result of the method call.

The non-ORM generated queries were written manually by a subject matter expert to meet the 
query objectives before using Django ORM to generate queries that would meet those objectives. 
The underlying database objects via the Django ORM were accessed by opening a Django shell in 
Python then calling the methods in the models module of the new application and tracing the queries 
against the database using a profiling tool. This enabled the comparison of the manual database queries 
with the ORM queries to determine if there were any differences which might impede performance.

Experimental Results
Table 8 shows how the manual SQL (non-ORM) queries compare with the ORM-generated queries 
for the 7 independent variables used as measures.

Note that due to random fluctuations in the compile time and total execution times that were 
outside the control of the experiment (including network latency to the database server; worker 
availability on the CPU scheduler; and memory allocation delays) a total of ten executions, with 
forced recompilation to avoid plan re-use, for each test were conducted to mitigate these effects and 
the mean average results (denoted as μ) are shown. Where there are multiple queries, the sum of the 
iterations are given under each measure heading.

Table 2. Measures (independent variables) to compare the efficiency of queries

Measure Definition Comparative Rule

Cached plan size 
(B)

The size of the cached plan in bytes. Smallest plan

Total plan cost Relative measure expressed as a real number. Lowest plan cost

Compile time (ms) Time in milliseconds to compile the plan (ready for 
execution).

Shortest compile time

Memory used 
during compilation 
(B)

Memory that was used (B) to compile the plan. Lowest memory use

Memory required 
(KB)

Memory that was required to execute the query (KB). Lowest memory use

Memory requested 
(KB)

Memory that the query optimiser requested to be 
reserved to execute the query (KB).

Most accurate (to Memory Required)

Total execution 
time

The time taken, in ms, between the query being 
executed and the return of the result set.

Shortest execution time

Total count of 
queries

The total number of separate SQL queries required to 
achieve the object.

Fewest number of queries



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

11

Query Objective O1
The queries were non-identical. The ORM tool produced a near-identical structural query but with 
the addition of an explicit CONVERT() operation on the airTemp column. This conversion was not 
required since the column was already stored in the FLOAT datatype. This difference was absorbed 
by the query optimiser ignoring the conversion request which resulted in identical query plans.

Anti-pattern(s): Redundant code

Query Objective O2
Note that aggregate() returns a dictionary object, not a QuerySet object. The annotate() method is 
not suitable when there is no column to group by.

The queries were structurally identical with very small differences in the alias names and 
whitespace. This was reflected in the identical query plans, although the ORM-generated version 
took slightly longer to compile and execute, possibly due to a minute addition to the delay in the 
parsing stage by the different syntax.

Table 3. Query Objective O1

Descriptor Values

Summary Return the mean average air temperature for all buoys on a month-by-month, year-by-year basis, 
ordered by month and year ascending.

Manual SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],﻿
AVG([factTAO].[airTemp]) AS [airtemp__avg]﻿
FROM [factTAO]﻿
INNER JOIN [dimDate]﻿
ON ([factTAO].[dateKey] = [dimDate].[dateKey])﻿
GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]﻿
ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC

Python/Django FactTAO.objects.all().select_related(‘datekey’).values(‘datekey__mthnum’, ‘datekey__yrnum’).
annotate(Avg(‘airtemp’)).order_by(‘datekey__mthnum’, ‘datekey__yrnum’)

ORM SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],﻿
AVG(CONVERT(float, [factTAO].[airTemp])) AS [airtemp__avg]﻿
FROM [factTAO]﻿
INNER JOIN [dimDate] ON ([factTAO].[dateKey] = [dimDate].[dateKey])﻿
GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]﻿
ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC

Table 4 Query Objective O2

Descriptor Values

Summary Return the earliest and latest dates for which buoy sensor readings exist within the data set.

Manual SQL SELECT MIN(f.dateKey) [earliestDate], MAX(f.dateKey) [latestDate]﻿
FROM dbo.factTAO f

Python/Django FactTAO.objects.aggregate(Min(‘datekey’), Max(‘datekey’))

ORM SQL SELECT MIN([factTAO].[dateKey]) AS [datekey__min],﻿
MAX([factTAO].[dateKey]) AS [datekey__max]﻿
FROM [factTAO]



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

12

Anti-pattern(s): None

Query Objective O3
The queries were structurally similar, with aliasing differences and transposition of the predicates in 
the WHERE clause. Although different query plans were used, their key metrics were identical. Of 
small note is how the ORM tool generated needless syntax (brackets) and did not alias the columns. 
Execution time was inconclusive, with the non-ORM version registering a longer execution time but 
the ORM version taking longer to compile.

Anti-pattern(s): Redundant code

Query Objective O4
Django ORM does not support the creation of Cartesian (CROSS) JOINs against the data model. 
Instead, a more creative solution is required. The mean average and standard deviations of the data 
were collected and stored as dictionary entries in memory, then the main query results similarly. 
The isAnomalous column of the main results was updated depending on the average and standard 
deviation values, and whether the data was missing (NULL). This overcame practical difficulties 
working with the NoneType (NULLable QuerySet column) when trying to convert to float. However, 
for a fair comparison to the SQL version, the time taken to update this QuerySet in memory was 
added. Consequently, the ORM equivalent became a three-step process.

The queries and subsequent plans produced for this query pair were extremely divergent. Due 
to lack of full ANSI-SQL syntax support (identified here and indirectly by Ireland et al. (2009)), the 
approach needed to solve the problem and the consequent queries produced were correspondingly 
different. The ORM-generated query also demonstrated a redundant CONVERT(), as in objective 
O1, but did demonstrate use of the native query preparation tools to handle the parameters and avoid 
storing the values with the compiled plan, which would increase the likelihood of parameter sniffing in 
future iterations and consequently skewed data affecting plan efficiency. As shown by the performance 
measurements, the ORM-generated query displayed significantly worse performance in many terms.

Table 5. Query Objective O3

Descriptor Values

Summary Return the latitude and longitude positions of all buoys in January 1984, with no ordering.

Manual SQL SELECT f.obsID, l.lat, l.long﻿
FROM dbo.factTAO f﻿
INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey﻿
INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey﻿
WHERE d.yrNum = 1984 AND d.mthNum = 1

Python/Django FactTAO.objects.select_related(‘dimlocation__locationkey’).all() .select_related(‘dimdate__
datekey’).all().values(‘obsid’, ‘locationkey__lat’, ‘locationkey__long’).filter(datekey__mthnum = 
1, datekey__yrnum = 1984)

ORM SQL SELECT [factTAO].[obsID], [dimLocation].[lat], [dimLocation].[long]﻿
FROM [factTAO]﻿
INNER JOIN [dimLocation]﻿
ON ([factTAO].[locationKey] = [dimLocation].[locationKey])﻿
INNER JOIN [dimDate]﻿
ON ([factTAO].[dateKey] = [dimDate].[dateKey])﻿
WHERE ([dimDate].[mthNum] = 1 AND [dimDate].[yrNum] = 1984)



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

13

Table 6. Query Objective O4

Descriptor Values

Summary Analyse sea surface temperature during the year 1990, and return all rows, including missing data, 
indicating as anomalous all values where the sea surface temperature is further than 2.5 standard 
deviations from the average for the year, ordered by date ascending.

Manual SQL SELECT d.dateKey, f.obsID, f.seaSurfaceTemp,﻿
CASE WHEN f.seaSurfaceTemp IS NULL﻿
THEN ‘Data missing’﻿
WHEN ABS(f.seaSurfaceTemp - sd.[avg]) > (2.5 * sd.sd)﻿
THEN ‘Anomalous’﻿
ELSE ‘Normal’﻿
END [isAnomalous]﻿
FROM dbo.factTAO f﻿
INNER JOIN dbo.dimDate d﻿
ON f.dateKey = d.dateKey﻿
CROSS JOIN (﻿
SELECT AVG(f.seaSurfaceTemp) [avg], STDEV(f.seaSurfaceTemp) [sd]﻿
FROM dbo.factTAO f﻿
INNER JOIN dbo.dimDate d﻿
ON f.dateKey = d.dateKey﻿
WHERE d.yrNum = 1990) sd﻿
WHERE d.yrNum = 1990﻿
ORDER BY d.dateKey ASC

Python/Django aggs = FactTAO.objects.select_related(‘datekey’).filter(datekey__yrnum = ‘1990’).aggregate(Avg
(‘seasurfacetemp’), StdDev(‘seasurfacetemp’))﻿
outer = FactTAO.objects.select_related(‘datekey’).values(‘datekey’, ‘obsid’, ‘seasurfacetemp’, 
isAnomalous = Case(When(seasurfacetemp = None, then = Value(‘Data Missing’)), default = 
Value(‘Normal’), output_field = CharField())).filter(datekey__yrnum = 1990).order_by(‘datekey’)﻿
﻿
for i in outer:﻿
if abs((float(i.get(‘seasurfacetemp’) or 0) –﻿
aggs.get(‘seasurfacetemp__avg’))) > 2.5 *﻿
aggs.get(‘seasurfacetemp__stddev’) and (i.get(‘isAnomalous’) != ‘Data Missing’):﻿
i[‘isAnomalous’] = ‘Anomalous’

ORM SQL (@P1 int)﻿
SELECT AVG(CONVERT(float, [factTAO].[seaSurfaceTemp])) AS [seasurfacetemp__avg], 
STDEVP([factTAO].[seaSurfaceTemp]) AS [seasurfacetemp__stddev]﻿
FROM [factTAO]﻿
INNER JOIN [dimDate]﻿
ON ([factTAO].[dateKey] = [dimDate].[dateKey])﻿
WHERE [dimDate].[yrNum] = @P1﻿
(@P1 nvarchar(24),@P2 nvarchar(12),@P3 int)﻿
SELECT [factTAO].[dateKey], [factTAO].[obsID], [factTAO].[seaSurfaceTemp],﻿
CASE WHEN [factTAO].[seaSurfaceTemp] IS NULL﻿
THEN @P1﻿
ELSE @P2﻿
END AS [isAnomalous]﻿
FROM [factTAO]﻿
INNER JOIN [dimDate] ON ([factTAO].[dateKey] = [dimDate].[dateKey])﻿
WHERE [dimDate].[yrNum] = @P3﻿
ORDER BY [factTAO].[dateKey] ASC



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

14

Table 7. Query Objective O5

Descriptor Values

Summary Return the approximate distance in miles between the two buoys that were furthest apart on 01 May 1994, ignoring missing 
data.

Manual SQL ;WITH locationData AS (﻿
SELECT f.obsID, d.dateKey, l.lat, l.long﻿
FROM dbo.factTAO f﻿
INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey﻿
INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey﻿
WHERE d.dateKey = ‘1994-05-01’),﻿
allCombinations AS (﻿
SELECT l1.obsID [from], l2.obsID [to],﻿
l1.lat [fromLat], l2.lat [toLat],﻿
l1.long [fromLong], l2.long [toLong]﻿
FROM locationData l1﻿
CROSS JOIN locationData l2),﻿
distances AS (﻿
SELECT c.[from], c.[to], c.fromLat, c.fromLong, c.toLat, c.toLong,﻿
MAX(ACOS(SIN(c.fromLat)*SIN(c.toLat) +﻿
COS(c.fromLat)*COS(c.toLat)*COS(c.toLong - c.fromLong)) * 3958.75) [d]﻿
FROM allCombinations c﻿
GROUP BY c.[from], c.[to], c.[fromLat], c.[toLat], c.fromLong, c.toLong)﻿
SELECT TOP 1 CAST(d.d AS NUMERIC(16,2)) [MaxDistance]﻿
FROM distances d﻿
ORDER BY [d] DESC

Python/Django from django.db.models import Max﻿
import math﻿
﻿
locationData = FactTAO.objects.select_related(‘datekey’, ‘locationkey’).values(‘obsid’, ‘datekey’, ‘locationkey__lat’, 
‘locationkey__long’).filter(datekey = ‘1994-05-01’)﻿
﻿
locationDataList = list(locationData)﻿
vals = []﻿
for i in locationDataList:﻿
vals.append(list(i.values()))﻿
allCombinations = []﻿
for i in range(0, len(vals)):﻿
for j in range(0, len(vals)):﻿
r = dict({”from”:vals[i][0], “to”:vals[j][0], “fromLat”:vals[i][2], “toLat”:vals[j][2], “fromLong”:vals[i][3], “toLong”:vals[j]
[3]})﻿
allCombinations.append(r)﻿
﻿
for row in allCombinations:﻿
LocationDataTempTable(fromField = row.get(“from”), toField = row.get(“to”), fromLat = row.get(“fromLat”), toLat = row.
get(“toLat”), fromLong = row.get(“fromLong”), toLong = row.get(“toLong”)).save()﻿
﻿
all = LocationDataTempTable.objects.all()﻿
dists = []﻿
for i in all:﻿
dists.append(i.distance)﻿
max(dists)

ORM SQL declare @p1 int set @p1=NULL﻿
exec sp_prepexec @p1 output,N’@P1 nvarchar(20)’,N’SELECT [factTAO].[obsID], [factTAO].[dateKey], [dimLocation].
[lat], [dimLocation].[long] FROM [factTAO] INNER JOIN [dimLocation] ON ([factTAO].[locationKey] = [dimLocation].
[locationKey]) WHERE [factTAO].[dateKey] = @P1’,N’1994-05-01’﻿
select @p1﻿
(the following query is repeated 1,156 times with different parameters)﻿
declare @p1 int set @p1=NULL﻿
exec sp_prepexec @p1 output,N’@P1 int,@P2 int,@P3 float,@P4 float,@P5 float,@P6 float’,N’SET 
NOCOUNT ON INSERT INTO [locationDataTempTable] ([from], [to], [fromLat], [toLat], [fromLong], 
[toLong]) VALUES (@P1, @P2, @P3, @P4, @P5, @P6); SELECT CAST(SCOPE_IDENTITY() AS bigi
nt)’,997,997,46.064999999999998,46.064999999999998,57.380000000000003,57.380000000000003﻿
select @p1﻿
SELECT [locationDataTempTable].[uqid], [locationDataTempTable].[from], [locationDataTempTable].[to], 
[locationDataTempTable].[fromLat], [locationDataTempTable].[toLat], [locationDataTempTable].[fromLong], 
[locationDataTempTable].[toLong] FROM [locationDataTempTable]



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

15

Anti-pattern(s): Lack of full ANSI-SQL syntax support, redundant code, multiple queries

Query Objective O5
The database query is too complex for the Django ORM to replicate directly, since it doesn’t support 
CROSS JOIN and there is limited support for the COS, ACOS, SIN and ASIN functions. Instead, 
the ORM was used to extract the location data, which was consumed recursively by iterating over 
each row in the location data for each row in the query set, effectively recreating a CROSS JOIN. The 
distances CTE was then compiled using a custom distances() function in the class definition using 
methods from the math module to implement the logic. Finally, the max aggregation of the output 
of this function was returned to the console.

This set of calculations is an implementation of the spherical law of cosines, scaled for miles, to 
calculate distance between two points on a sphere (‘Spherical Trigonometry’, n.d., para. 6). This was 
used to accurately measure distance while taking into account the curvature of the Earth.

Observations included 1,156 individual INSERT queries ran in place of a single INSERT, the 
splitting up of the query into multiple queries, double writes to the database, redundant code and 
implicit conversion issues. Although some metrics such as plan size were smaller than non-ORM 
generated queries, the query execution time for the ORM query was more than 300x that of the non-
ORM query.

Anti-pattern(s): Multiple queries, N+1, implicit conversion, redundant code, lack of ANSI-SQL support

Discussion
The results are assessed against the evaluation criteria as follows. For each criterion, the two results 
– for the ORM-generated query, and for the non-ORM generated query – are compared using the 
condition for the criterion specified in the ‘Comparative Rule’ column (of Table 2). If the non-ORM 

Table 8. Results from ORM-generated and manual query performance testing

Cached Plan 
Size (KB)

Total Plan 
Cost

μ Compile 
Time (ms)

Memory Used During 
Compilation (B)

Non-ORM ORM Non-ORM ORM Non-ORM ORM Non-ORM ORM

O1 80 72 2.59791 2.59791 14.8 13.4 376 376

O2 16 16 1.51565 1.51565 1.0 1.4 216 216

O3 72 64 2.42003 2.42003 2.0 9.4 512 512

O4 96 128 5.24644 5.25825 17.4 24.2 776 856

O5 56 64 3.37822 13.08612 16.0 4.0 1344 472

Memory
Required (B)

Memory
Requested (B)

μ Total Execution
Time (ms)

Total Number
of Queries

Non-ORM ORM Non-ORM ORM Non-ORM ORM Non-ORM ORM

O1 2048 2048 3152 3152 1482.0 1484.0 1 1

O2 0 0 0 0 537.6 596.4 1 1

O3 3240 3240 3240 3240 449.0 572.2 1 1

O4 3712 5704 3712 5704 1942.4 1829.8 1 2

O5 1736 0 1736 0 98.0 32441.0 1 1,158



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

16

result meets the condition, a score of -1 is assigned. If the ORM result meets the condition, a score 
of 1 is assigned. If the condition cannot be applied as both results are equal, 0 is assigned.

For illustration: For the criterion Total Execution Time (ms), the comparative rule is Shortest execution 
time. The results obtained, as per Table 9, for this criterion across the 5 query objectives were as 
follows, in the format Non-ORM/ORM: 1482.0/1484.0, 537.6/596.4, 449.0/572.2, 1942.4/1829.8 
and 98.0/32441.0. So for each pair, the smallest value is found, and the appropriate score assigned. 
Comparing each pair, we assign the scores as described: -1, -1, -1, 1, -1. Summing these scores 
yields -3. Consequently, the score for this criterion across all query objectives is -3.

In Figure 2, the scores for all 7 criteria are presented using this scoring mechanism. Negative 
scores are associated with non-ORM generated queries, positive scores with ORM-generated queries 
and zero scores with neither category. For every evaluation criterion, the results showed that non-
ORM generated queries outperformed ORM-generated queries using the definitions of the respective 
comparative rules.

The data can also be presented pivoted by query objective (O1 to O5). For this analysis, the same 
scoring mechanism is used but instead of assessment solely by evaluation criterion, the assessment is 

by query objective, which helps illustrate the relationship between query complexity and superiority 
of method. The comparative rules of the evaluation criteria are used to assign scores, as before.

For illustration: For query objective O4, each pair of results is assessed against the respective 
comparative rules. The results are, in the format Non-ORM/ORM: 96/128, 5.24644/5.25825, 
17.4/24.2, 776/856, 3712/5704, 3712/5704, 1942.4/1829.8 and 1/2. The comparative rules for 
each can be summarised as ‘find the smallest value’, and so for each pair the smallest value is 
found, and the appropriate score assigned: -1, -1, -1, -1, -1, -1, 1, -1, which sums to -6. Therefore, 
the score for Objective O4 across all criteria is -6.

Figure 2. Total score by evaluation criterion



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

17

The scores for the query objectives across all evaluation criteria are illustrated in Figure 3. There 
is a correlation between query complexity and score – query objective O1, a simple query, had better 
overall performance when generated by an ORM than otherwise. Query objective O4, a complex 
query, had significantly better performance when generated by a non-ORM method than by the ORM, 
with only one evaluation criteria rating the ORM as better-performing.

However, query objective O5 shows a neutral result despite the complexity of the query, and 
the reason is that the number of evaluation criteria that favoured non-ORM generated queries was 
equal to the number favouring ORM-generated queries, so no clear determination can be made. This 
highlights a weakness in this analysis approach –each criterion is given equal weighting in the scoring 
despite extremes in the data and comparative importance of each criterion. Query execution time can 
be thought of as a strong desirable trait in query performance outcomes, perhaps more so (from the 
user’s perspective) than plan cost or memory use, and an equal weighting for all criteria obfuscates 
this view. This weakness can be overcome by drawing upon the data in detail. Figure 4 illustrates 

Figure 3. Total score by query objective

Figure 4. Correlation between increasing complexity and execution time of ORM methods



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

18

the relationship, drawn from the results between mean total execution time and query objectives, or 
complexity (where O1 is least complex and O5 most complex).

This result shows that there is a generally positive correlation between complexity of query and 
the time taken to execute the query derived by the ORM-generated method, even if the result from 
O5 as an extreme outlier is excluded.

Performing t-testing on the observations of the mean execution time across the query objectives 
illustrated in Figure 2, this analysis is borne out by the p-values obtained for all the observations. 
Table 9 shows that in these t-tests, p > 0.05 (highlighted). This supports the conclusion that there is 
a significant uplift in the execution time of the ORM-generated queries than the non-ORM generated 
queries as complexity rises.

In general, the results showed that as query complexity rose, ORM-generated queries incurred 
performance penalties across multiple evaluation criteria, and started to exhibit performance anti-
patterns referenced in the literature (Karwin, 2017; Chen et al., 2014) and observed in related studies 
(Colley, Stanier & Asaduzzaman, 2018; Colley & Stanier, 2017). The p-value testing of the results of 
one important evaluation criterion helped support the evidence (p > 0.05) that this correlation exists.

The scope of the investigation was over a relatively small data set of three tables. The results, 
showing divergence across many of the performance measures between both ORM-generated queries 
and non-ORM generated queries, are likely to diverge further as the complexity of the database schema 
and the amount of data involved increases, a conclusion supported by the evidence from the survey 
detailing performance deficits in ORM tools from database practitioners.

RESEARCH CONTRIBUTIONS

Object-Relational Mapping tools are ubiquitous in modern application development environments, 
with a range of different packages available for most contemporary development languages and 
frameworks. The necessity of these packages is due to the need for object-oriented languages to 
communicate with the relational model. ORMs are able to provide practical SQL queries in response 
to method calls, and to translate received results to objects for consumption by the application layer, 
but in our literature review, we questioned the suitability of ORMs to provide optimised SQL queries, 
performant to the same degree as well-written SQL queries executed directly against the database 
platform. We identified several important works in the literature that acknowledged this problem and 
characterised some attempts at mitigation. The importance of ascertaining the efficiency of ORM-
generated SQL and finding strategies to mitigate the generation of poorly-performing queries is of 
paramount importance in the near future; as the velocity, variety and volume of data continues to grow, 
queries must deal with an increasing level of information density and to continue to operate in any 
practical manner, the time is right for a re-examination of the fundamental paradigms behind ORM 
software tools. Our research aims to contribute to the body of literature that has already investigated 

Table 9. p-values from t-testing of mean execution time observations

Non-ORM ORM

Mean 901.8 7384.68

Variance 600811.08 196496129.3

Observations 5 5

Hypothesized Mean Difference 0

P(T<=t) one-tail 0.180

P(T<=t) two-tail 0.360



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

19

this area and show whether these problems are still current in modern ORM environments, both 
through survey of the practitioners involved and demonstration using current tools, and to work to 
identify ways in which the object-relational impedance mismatch problem can be solved.

In our research, through questioning database practitioners about their experiences with ORM 
tooling, we found the majority of practitioners take a dim view of their efficacy. Our survey results 
add to the growing body of research that noted the disparity between object-oriented and relational 
coding (Jungfer et al., 1999) through to the formal classification of the problem (Ireland et al., 2009), 
and more recently cataloguing the design flaws inherent in such systems (Chen et al., 2014; Karwin, 
2017, Torres et al., 2017). There is comparatively little qualitative research available which questions 
industrial database practitioners specifically about this issue, and so our findings add some credence 
to views elsewhere in the literature (ibid.) that ORMs are not entirely well-suited as solutions to the 
object-relational impedance mismatch problem in the field.

We acknowledge there may exist some latent flaws in our survey research; notably, the relatively 
low respondent count, and the potential reliability of the respondents’ answers brought about by their 
self-selection as participants. These are not original problems with survey research in general, but 
difficult to overcome considering the relatively specialist audience. We sought to mitigate these issues 
by investigating the problem further using experimental work, using one primary outcome from the 
survey –it is perceived that ORM queries tend to be less performant than manually-written queries. 
In doing so, we tested the currency and validity of this claim, with some success. Our theoretical 
contributions are therefore the confirmation that the object-relational impedance mismatch problem 
is still current; that implementation of ORMs do not yet fully mitigate its theoretical effects; and that 
the perception of ORMs in the industry is poor, meaning more work in better integrating the object 
and relational worlds to produce more effective solutions is likely to be beneficial in future industrial 
software development.

Examination of the underlying conceptual and practical issues of ORMs, whether by qualitative 
or quantitative means, is not new; numerous examples by Karwin (2017) and Torres et al. (2017) 
could be seen as more thorough; however our investigations and subsequent results from both strands 
benefit from being industry-aligned, less abstract than purely academic studies and rooted in concrete, 
reproducible outcomes. Consequently, our practical contributions to the field are the identification 
of specific use-case patterns where SQL queries are better-performing through direct calls from the 
application layer than through an ORM; the re-affirmation that this issue continues to be current; and 
the conclusion that ORMs have negative performance implications as query complexity increases, both 
in terms of material, measurable performance impacts to the calling application and system resources 
through the display of inefficient design patterns, which may encourage mitigation strategies such as 
the design of database schemas for simplicity.

CONCLUSION AND FUTURE WORK

We analysed the survey results thematically and drew a number of narratives from the findings. These 
narratives were characterised as ORM use; education, awareness and perception; negative ORM 
behaviour; and future outlook. The survey results suggested that ORM tools are not ubiquitous but 
are present in a sizeable minority of respondents’ organisations. It was felt by respondents that ORMs 
were fundamentally incompatible in several ways with RDBMS systems; that they were difficult to 
tune, and this was supported by examples from the respondents that were echoed in the literature 
(ibid.). The findings suggested that at least some of the performance difficulties associated with ORM 
tooling can be attributed to lack of awareness in the developer community in how to use these tools 
efficiently, although this conclusion is arguably countered by the differences of opinion between the 
database administration community and the developer community (Ambler, 2018; Neward, 2006). The 
survey findings were supportive in general of automation and positive about the future of relational 
database performance tuning, albeit sceptical of the role that ORM tooling may play in that future.



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

20

The exploration of the objectives was continued in the experimental investigation. Five query 
objectives were defined and based on a real data set were constructed and presented in increasing 
order of complexity, and the performance of ORM and non-ORM generated versions compared. The 
outcome of our experimentation showed that when the results were grouped by performance metric, 
manually-written (non-ORM) queries outperformed ORM-generated queries. This meant that after 
assessing each query by each evaluation criterion and producing sum totals grouped by criterion in 
no cases did ORM queries generally outperform manually-written queries; this only occurred when 
considering individual results, and for low levels of complexity. The findings were then pivoted to 
analyse the evaluation criteria by the queries in increasing order of complexity. Using this view of 
the data it was shown that in 3 of 5 cases, manually-written queries outperformed ORM-generated 
queries, with 1 vice versa case and 1 inconclusive observation. Deconstructing the outcomes by 
query complexity, it was found there was a positive correlation between query complexity and query 
execution time and that the ORM-generated queries consistently took longer to run (p = 0.18) than 
non-ORM queries as complexity increased.

Additionally, undesirable behaviour was observed by the ORM tooling and mirrored some of 
the behaviour listed by the respondents of the survey and detailed in the literature. In particular, 
redundant code, lack of support for the full language, multiple queries, implicit conversion and row-
by-row processing (the N+1 problem) were observed.

The survey findings and experimental evidence support the conclusion that ORM tooling 
has negative performance implications as query complexity increases, both in terms of material, 
measurable performance impacts to the calling application and system resources, and through the 
display of inefficient design patterns. ORMs are widespread but not universally used with the survey 
findings suggesting that barriers to adoption are related to perceived poor performance, and so there 
is a gap for future research into approaches to mitigate or remove the negative impacts to database 
query performance caused by ORM tools.

Our findings have illustrated the need to consider alternative approaches to database performance 
tuning that are better able to assist in compiling and executing queries generated from non-traditional 
sources such as ORM frameworks. Such a solution could take the form of a flexible database 
performance management framework capable of handling sub-optimal queries.

One potential solution is a model incorporating some degree of schema selectivity. One of the 
issues noted in the findings of this paper was the existence of redundant code and the existence of 
implicit conversion problems. Other undesirable behaviours, such as fetching more columns than 
required, suggest that a potential direction is the creation of multiple schemas within a database, 
each of which is essentially a ‘whole-database’ index. Building alternative schemas on the same 
tree-based principles as indexes but widening the scope to multiple objects could form the basis of 
a new schema selection algorithm. This is not without precedent, as Chen (1999) investigated the 
choice of alternate schemata on a query-by-query basis with initially positive findings. One direction 
we are exploring is the employment of a query comparison and schema selection algorithm using 
an alternative model for query representation. Another direction is the reconsideration of SQL 
queries as constructed objects composed of first-order logic, representable in more computable and 
comparable ways within database engines. The viability and detail of these proposed solutions are 
current research topics for the authors.



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

21

REFERENCES

Ambler, S. W. (2008). When it gets cultural: Data management and Agile development. IT Professional, 10(6), 
11–14. doi:10.1109/MITP.2008.135

Ambler, S. W. (2018). The Cultural Impedance Mismatch Between Data Professionals and Application 
Developers. Retrieved from http://www.agiledata.org/essays/culturalImpedanceMismatch.html

An, Y., Hu, X., & Song, I. (2010). Maintaining mappings between conceptual models and relational schemas. 
Journal of Database Management, 21(3), 36–68. doi:10.4018/jdm.2010070102

Aronson, J. (1995). A pragmatic view of thematic analysis. Qualitative Report, 2(1), 2–3. https://nsuworks.
nova.edu/tqr/vol2/iss1/3/

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N., Griffiths, P. P., King, W. F., 
Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu, G. R., Traiger, I. L., Wade, B. W., & Watson, V. (1976). 
System R: Relational approach to database management. ACM Transactions on Database Systems, 1(2), 97–137. 
doi:10.1145/320455.320457

Banerjee, J., Chou, H. T., Garza, J. F., Kim, W., Woelk, D., Ballou, N., & Kim, H. J. (1987). Data model issues 
for object-oriented applications. ACM Transactions on Information Systems, 5(1), 3–26. doi:10.1145/22890.22945

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors. Proceedings of the 52nd Annual Meeting of the Association 
for Computational Linguistics, 1, 238-247. Retrieved from http://clic.cimec.unitn.it/marco/publications/acl2014/
baroni-etal-countpredict-acl2014.pdf

Bay, D. S., Kibler, D. F., Pazzani, M. J., & Smyth, P. (2000). The UCI KDD Archive of Large Data Sets for 
Data Mining Research and Experimentation. SIGKDD Explorations, 2(2), 81–85. doi:10.1145/380995.381030

Bolloju, N., & Toraskar, K. (1997). Data Clustering for Effective Mapping of Object Models to Relational 
Models. Journal of Database Management, 8(4), 16–24. doi:10.4018/jdm.1997100102

Chen, A. N. (1999). Improving database performances in a changing environment with uncertain and dynamic 
information demand: An intelligent database system approach (Doctoral dissertation). University of Connecticut. 
Retrieved from: https://opencommons.uconn.edu/dissertations/AAI9942566/

Chen, C. M., & Roussopoulos, N. (1994). The implementation and performance evaluation of the ADMS query 
optimizer: Integrating query result caching and matching. International Conference on Extending Database 
Technology, 1, 323-336. doi:10.1007/3-540-57818-8_61

Chen, T., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Detecting performance anti-
patterns for applications developed using object-relational mapping. Proceedings of the 36th International 
Conference on Software Engineering, 1001-1012. doi:10.1145/2568225.2568259

Cheung, A., Madden, S., & Solar-Lezama, A. (2016). Sloth: Being lazy is a virtue (when issuing database 
queries). ACM Transactions on Database Systems, 41(2), 8. doi:10.1145/2894749

Clarke, V., & Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and developing strategies 
for effective learning. The Psychologist, 26(2), 120-123. Retrieved from http://eprints.uwe.ac.uk/21155

Codd, E. F. (1974). Recent Investigations into Relational Data Base Systems. IBM Research Report RJ 1385. 
In Proceedings of the 1974 Congress. New York, NY: North-Holland.

Colley, D., & Stanier, C. (2017). Identifying New Directions in Database Performance Tuning. Procedia Computer 
Science, 121, 260–265. doi:10.1016/j.procs.2017.11.036

Colley, D., Stanier, S., & Asaduzzaman, M. (2018). The Impact of Object-Relational Mapping Frameworks 
on Relational Query Performance. Proceedings of the International Conference on Computer, Electrical and 
Electronics Engineering 2018 (ICCECE ‘18), 47-52. Retrieved from: https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=8659222

Date, C. J. (1990). Relational database writings, 1985-1989 (Vol. 1). Addison-Wesley.

http://dx.doi.org/10.1109/MITP.2008.135
http://www.agiledata.org/essays/culturalImpedanceMismatch.html
http://dx.doi.org/10.4018/jdm.2010070102
https://nsuworks.nova.edu/tqr/vol2/iss1/3/
https://nsuworks.nova.edu/tqr/vol2/iss1/3/
http://dx.doi.org/10.1145/320455.320457
http://dx.doi.org/10.1145/22890.22945
http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf
http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf
http://dx.doi.org/10.1145/380995.381030
http://dx.doi.org/10.4018/jdm.1997100102
https://opencommons.uconn.edu/dissertations/AAI9942566/
http://dx.doi.org/10.1007/3-540-57818-8_61
http://dx.doi.org/10.1145/2568225.2568259
http://dx.doi.org/10.1145/2894749
http://eprints.uwe.ac.uk/21155
http://dx.doi.org/10.1016/j.procs.2017.11.036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8659222
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8659222


Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

22

Durand, J., Ganti, M., & Salinas, R. (1994) Object View Broker: A mediation service and architecture to provide 
object-oriented views of heterogeneous databases. Applications of Databases: Lecture Notes in Computer Science, 
819. Retrieved from https://link.springer.com/chapter/10.1007/3-540-58183-9_63

Fritchey, G. (2018). SQL Server 2017 Query Performance Tuning. Apress. doi:10.1007/978-1-4842-3888-2

Halpin, T. (2002). Metaschemas for ER, ORM and UML data models: A comparison. Journal of Database 
Management, 13(2), 20–30. doi:10.4018/jdm.2002040102

He, Z., & Darmont, J. (2005). Evaluating the dynamic behavior of database applications. Journal of Database 
Management, 16(2), 21–45. doi:10.4018/jdm.2005040102

Held, G. D., Stonebraker, M. R., & Wong, E. (1975). INGRES: a relational data base system. Proceedings of 
the May 19-22, 1975 National Computer Conference and Exposition, 409-416.

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009). A Classification of Object-Relational Impedance 
Mismatch. First International Conference on Advances in Databases, Knowledge, and Data Applications. 
doi:10.1109/DBKDA.2009.11

Ismailova, L. Y., & Kosikov, S. V. (2018). Metamodel of Transformations of Concepts to Support the Object-
Relational Mapping. Procedia Computer Science, 145, 260–265. doi:10.1016/j.procs.2018.11.055

Jungfer, K., Leser, U., & Rodriguez-Tomé, P. (1999). Constructing IDL views on relational databases. International 
Conference on Advanced Information Systems Engineering, 255-268. Retrieved from https://link.springer.com/
content/pdf/10.1007/3-540-48738-7_19.pdf

Karwin, B. (2017). SQL Antipatterns. Pragmatic Bookshelf.

Kim, W. (1990). Object-oriented databases: Definition and research directions. IEEE Transactions on Knowledge 
and Data Engineering, 3(3), 327–341. doi:10.1109/69.60796

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The 
next frontier for innovation, competition, and productivity. McKinsey Global Institute. Retrieved from https://
www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20
data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx

Microsoft Corporation. (2009). Getting Started with Entity Framework 6 Code First using MVC 5. Retrieved 
from https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/
creating-an-entity-framework-data-model-for-an-asp-net-mvc-application

Microsoft Corporation. (2019). sys.dm_exec_query_plan_stats (Transact-SQL). Retrieved from https://docs.
microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-
stats-transact-sql?view=sql-server-ver15

Mlynkova, I., & Pokorný, J. (2004). From XML Schema to Object-Relational Database-An XML Schema-Driven 
Mapping Algorithm. ICWI. Retrieved from http://www.cs.cas.cz/semweb/download/04-10-Mlynkova.pdf

Neward, T. (2006). The Vietnam of Computer Science. Retrieved from https://pdfs.semanticscholar.org/331e/4
90c55ee72d6011bbceb323c03f0572a5235.pdf

Niu, B., Martin, P., & Powley, W. (2009). Towards autonomic workload management in DBMSs. Journal of 
Database Management, 20(3), 1–17. doi:10.4018/jdm.2009070101

Orenstein, J. A. (1999). Supporting retrievals and updates in an object/relational mapping system. IEEE Data 
Eng. Bull., 22(1), 50-54. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.9399&
rep=rep1&type=pdf#page=52

Pachev, S. (2007). Understanding MySQL Internals. O’Reilly.

Pacific Marine Environmental Laboratory (PMEL), National Oceanic and Atmospheric Administration (NOAA). 
(2018). El Nino Data Set. Retrieved from https://archive.ics.uci.edu/ml/datasets/El+Nino

Ramachandra, K., & Sudarshan, S. (2012). Holistic optimization by prefetching query results. Proceedings of the 
2012 ACM SIGMOD International Conference on Management of Data, 133-144. doi:10.1145/2213836.2213852

Solid, I. T. (2018). DB-Engines Ranking. Retrieved from https://dbengines.com/en/ranking

https://link.springer.com/chapter/10.1007/3-540-58183-9_63
http://dx.doi.org/10.1007/978-1-4842-3888-2
http://dx.doi.org/10.4018/jdm.2002040102
http://dx.doi.org/10.4018/jdm.2005040102
http://dx.doi.org/10.1109/DBKDA.2009.11
http://dx.doi.org/10.1016/j.procs.2018.11.055
https://link.springer.com/content/pdf/10.1007/3-540-48738-7_19.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48738-7_19.pdf
http://dx.doi.org/10.1109/69.60796
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-ver15
http://www.cs.cas.cz/semweb/download/04-10-Mlynkova.pdf
https://pdfs.semanticscholar.org/331e/490c55ee72d6011bbceb323c03f0572a5235.pdf
https://pdfs.semanticscholar.org/331e/490c55ee72d6011bbceb323c03f0572a5235.pdf
http://dx.doi.org/10.4018/jdm.2009070101
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.9399&rep=rep1&type=pdf#page=52
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.9399&rep=rep1&type=pdf#page=52
https://archive.ics.uci.edu/ml/datasets/El+Nino
http://dx.doi.org/10.1145/2213836.2213852
https://dbengines.com/en/ranking


Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

23

Derek Colley is a researcher and lecturer in data management at Staffordshire University, and maintains a 
professional practice as an independent database consultant with more than a decade of extensive industry 
experience. He holds M.Sc and B.Sc degrees in Computer Science, a Postgraduate Diploma in Information 
Security and Digital Forensics and will complete his Ph.D in relational database optimisation in 2020. His research 
interests include data management, information representation theory, database administration and set theory with 
emphasis on the relational model. His current research project is the improvement of database query processing 
techniques through alternative representation forms.

Clare Stanier (PhD) was awarded a PhD in Information Systems from Staffordshire University in 2009. Dr Stanier 
researches and publishes in the field of Data Analytics and has a particular interest in the applications of machine 
learning to Business Intelligence and Big Data and Big Data Analytics. She is based at Staffordshire University 
where she lectures in Data Analytics and Data Management and supervises a number of PhD students working in 
these fields. Her major current research project is an investigation into the use of Big Data by Small and Medium 
Enterprises (SMEs).

Md Asaduzzaman received the B.Sc. and M.Sc. degrees in applied statistics from the University of Dhaka, Dhaka, 
Bangladesh, the M.Sc. degree in bioinformatics from Chalmers University of Technology, Gothenburg, Sweden, and 
the Ph.D. degree in operational research from the University of Westminster, London, U.K. He is a Senior Lecturer 
of statistics and operational research with Staffordshire University where he has been a faculty member since 2014, 
formerly a Lecturer and Assistant Professor of applied statistics with the Institute of Statistical Research and Training, 
University of Dhaka. His primary research interests include queueing, other stochastic models and mathematical 
programming for performance measure, capacity and resource planning, and management in healthcare, and 
telecommunication and other communication networks. He is also interested in statistical computing, large-scale 
data mining, and analysis in the earth, environmental sciences, and healthcare.

Spherical Trigonometry. (n.d.). Wikipedia. Retrieved November 23, 2018, from https://en.wikipedia.org/wiki/
Spherical_trigonometry

Stoll, R. R. (1963). Set Theory and Logic. W H Freeman and Co.

Torres, A., Galante, R., Pimenta, M. S., & Martins, A. J. B. (2017). Twenty years of object-relational mapping: A 
survey on patterns, solutions, and their implications on application design. Information and Software Technology, 
82, 1–18. doi:10.1016/j.infsof.2016.09.009

Vial, G. (2018). Lessons in persisting object data using object-relational mapping. IEEE Software, 36(6), 43–52. 
doi:10.1109/MS.2018.227105428

https://en.wikipedia.org/wiki/Spherical_trigonometry
https://en.wikipedia.org/wiki/Spherical_trigonometry
http://dx.doi.org/10.1016/j.infsof.2016.09.009
http://dx.doi.org/10.1109/MS.2018.227105428

