
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 121 (2017) 260–265

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information
Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social
Care Information Systems and Technologies.
10.1016/j.procs.2017.11.036

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information
Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social
Care Information Systems and Technologies.
10.1016/j.procs.2017.11.036

10.1016/j.procs.2017.11.036

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Identifying New Directions in Database Performance Tuning
a Derek Colley*, b Dr. Clare Stanier

 aSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK
 bSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK

Abstract

Database performance tuning is a complex and varied active research topic. With enterprise relational database management
systems still reliant on the set-based relational concepts that defined early data management products, the disparity between the
object-oriented application development model and the object-relational database model, called the object-relational impedance
mismatch problem, is addressed by techniques such as object-relational mapping (ORM). This, compounded with changes in the
way data is produced, stored and managed can result in generally poor query performance for SQL produced by object-oriented
applications and an irregular fit with cost-based optimisation algorithms, and leads to questions about the need for the relational
model to better adapt to a more diverse set of queries. This paper discusses existing database performance optimisation
techniques and approaches and makes the argument that current database performance tuning approaches need revisiting to
support queries developed through ORM tools. This paper also introduces our current research, which includes exploring
concepts such as dynamic schema redefinition; query analysis and optimisation modelling driven by machine learning; and
augmentation of the cost-based optimiser model.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Database, SQL, performance tuning, cost-based optimiser, object-relational mapping, object-relational impedance mismatch

* Corresponding author. Tel.: +44(0) 161 298 5115

 E-mail address: derek.colley@research.staffs.ac.uk

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Identifying New Directions in Database Performance Tuning
a Derek Colley*, b Dr. Clare Stanier

 aSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK
 bSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK

Abstract

Database performance tuning is a complex and varied active research topic. With enterprise relational database management
systems still reliant on the set-based relational concepts that defined early data management products, the disparity between the
object-oriented application development model and the object-relational database model, called the object-relational impedance
mismatch problem, is addressed by techniques such as object-relational mapping (ORM). This, compounded with changes in the
way data is produced, stored and managed can result in generally poor query performance for SQL produced by object-oriented
applications and an irregular fit with cost-based optimisation algorithms, and leads to questions about the need for the relational
model to better adapt to a more diverse set of queries. This paper discusses existing database performance optimisation
techniques and approaches and makes the argument that current database performance tuning approaches need revisiting to
support queries developed through ORM tools. This paper also introduces our current research, which includes exploring
concepts such as dynamic schema redefinition; query analysis and optimisation modelling driven by machine learning; and
augmentation of the cost-based optimiser model.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Database, SQL, performance tuning, cost-based optimiser, object-relational mapping, object-relational impedance mismatch

* Corresponding author. Tel.: +44(0) 161 298 5115

 E-mail address: derek.colley@research.staffs.ac.uk

2 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

1. Problem Summary

Relational database systems (RDBMS) underpin a large number of today's business enterprises and RDBMS
performance tuning is a well-understood field. However, relational databases have been extended over time to
include object-oriented support and integration with external languages36 and as application development paradigms
have advanced, performance issues have emerged. This is particularly the case when dealing with non-static,
fluctuating application models which interface with RDBMSs through paradigms such as object-relational
modelling. These techniques have shown that automatic generation of SQL can lead to sub-optimal query
performance in a relational environment11,17,22 and means there is a need to identify new approaches for performance
tuning to keep pace with the progress in application development methodologies. This paper reviews some existing
RDBMS performance optimisation methods and comments on the strengths and limitations of traditional approaches
in the current database environment; this paper also suggests directions for future work which include introducing
agility and dynamic capabilities into query optimisation approaches with techniques such as pattern classification
using machine learning. The rest of this paper is organised as follows. Section 2 gives the context of the
investigation. Section 3 discusses current approaches to database performance tuning and Section 4 gives the
conclusions and suggestions for future work.

2. Research Approach

A literature review of RDBMS performance tuning approaches was conducted. The first stage of the review was
to identify seminal papers through key phrase searches. Papers were then ranked using a citation function to
prioritise key sources. Topic and key conclusions were extracted from the paper and fitted into a directed graph. The
process was then iterated. More than 100 highly cited papers were identified but the volume of material relating to
RDBMS performance tuning means that only the sources identified as most relevant are discussed in this paper. A
limitation of the approach was that the focus on seminal papers means the method is retrospective. For this reason,
the review was expanded to ensure that more recent research was also included.

3. Performance Tuning

From the literature review, three key areas relating to query performance were identified: database design, query
optimisation and query design.

3.1. Database Design Considerations

Relational databases are based on relational set theory and effective RDBMS design supports queries based on
the relational algebra. However, although relational design concepts are well understood, adherence to good
database design patterns is not enforced in the industry, nor arguably is it now even encouraged1. The primary
technique for achieving optimal relational design is normalisation14,15, although normalisation is often criticised for
unnecessary complexity8 particularly when regarding JOINs between tables43. A key assumption in the work on
JOIN optimisation is that query design is driven by the schema design; in other words, that queries are developed to
work with a given schema as efficiently as possible. This is not necessarily the case with SQL queries generated by
applications or through mapping; for example, the ‘N+1’ problem is endemic in topologies with dependent
relationships between entities (tables) and, where ORM-driven lazy loading is used, where data about the parent
entities is returned on a row-by-row rather than a set basis. This results in multiple queries where only a single one

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.11.036&domain=pdf

 Derek Colley et al. / Procedia Computer Science 121 (2017) 260–265 261

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Identifying New Directions in Database Performance Tuning
a Derek Colley*, b Dr. Clare Stanier

 aSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK
 bSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK

Abstract

Database performance tuning is a complex and varied active research topic. With enterprise relational database management
systems still reliant on the set-based relational concepts that defined early data management products, the disparity between the
object-oriented application development model and the object-relational database model, called the object-relational impedance
mismatch problem, is addressed by techniques such as object-relational mapping (ORM). This, compounded with changes in the
way data is produced, stored and managed can result in generally poor query performance for SQL produced by object-oriented
applications and an irregular fit with cost-based optimisation algorithms, and leads to questions about the need for the relational
model to better adapt to a more diverse set of queries. This paper discusses existing database performance optimisation
techniques and approaches and makes the argument that current database performance tuning approaches need revisiting to
support queries developed through ORM tools. This paper also introduces our current research, which includes exploring
concepts such as dynamic schema redefinition; query analysis and optimisation modelling driven by machine learning; and
augmentation of the cost-based optimiser model.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Database, SQL, performance tuning, cost-based optimiser, object-relational mapping, object-relational impedance mismatch

* Corresponding author. Tel.: +44(0) 161 298 5115

 E-mail address: derek.colley@research.staffs.ac.uk

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Identifying New Directions in Database Performance Tuning
a Derek Colley*, b Dr. Clare Stanier

 aSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK
 bSchool of Computing and Digital Technologies, Staffordshire University, Mellor Building, College Rd, Stoke-on-Trent ST4 2DE, UK

Abstract

Database performance tuning is a complex and varied active research topic. With enterprise relational database management
systems still reliant on the set-based relational concepts that defined early data management products, the disparity between the
object-oriented application development model and the object-relational database model, called the object-relational impedance
mismatch problem, is addressed by techniques such as object-relational mapping (ORM). This, compounded with changes in the
way data is produced, stored and managed can result in generally poor query performance for SQL produced by object-oriented
applications and an irregular fit with cost-based optimisation algorithms, and leads to questions about the need for the relational
model to better adapt to a more diverse set of queries. This paper discusses existing database performance optimisation
techniques and approaches and makes the argument that current database performance tuning approaches need revisiting to
support queries developed through ORM tools. This paper also introduces our current research, which includes exploring
concepts such as dynamic schema redefinition; query analysis and optimisation modelling driven by machine learning; and
augmentation of the cost-based optimiser model.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Database, SQL, performance tuning, cost-based optimiser, object-relational mapping, object-relational impedance mismatch

* Corresponding author. Tel.: +44(0) 161 298 5115

 E-mail address: derek.colley@research.staffs.ac.uk

2 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

1. Problem Summary

Relational database systems (RDBMS) underpin a large number of today's business enterprises and RDBMS
performance tuning is a well-understood field. However, relational databases have been extended over time to
include object-oriented support and integration with external languages36 and as application development paradigms
have advanced, performance issues have emerged. This is particularly the case when dealing with non-static,
fluctuating application models which interface with RDBMSs through paradigms such as object-relational
modelling. These techniques have shown that automatic generation of SQL can lead to sub-optimal query
performance in a relational environment11,17,22 and means there is a need to identify new approaches for performance
tuning to keep pace with the progress in application development methodologies. This paper reviews some existing
RDBMS performance optimisation methods and comments on the strengths and limitations of traditional approaches
in the current database environment; this paper also suggests directions for future work which include introducing
agility and dynamic capabilities into query optimisation approaches with techniques such as pattern classification
using machine learning. The rest of this paper is organised as follows. Section 2 gives the context of the
investigation. Section 3 discusses current approaches to database performance tuning and Section 4 gives the
conclusions and suggestions for future work.

2. Research Approach

A literature review of RDBMS performance tuning approaches was conducted. The first stage of the review was
to identify seminal papers through key phrase searches. Papers were then ranked using a citation function to
prioritise key sources. Topic and key conclusions were extracted from the paper and fitted into a directed graph. The
process was then iterated. More than 100 highly cited papers were identified but the volume of material relating to
RDBMS performance tuning means that only the sources identified as most relevant are discussed in this paper. A
limitation of the approach was that the focus on seminal papers means the method is retrospective. For this reason,
the review was expanded to ensure that more recent research was also included.

3. Performance Tuning

From the literature review, three key areas relating to query performance were identified: database design, query
optimisation and query design.

3.1. Database Design Considerations

Relational databases are based on relational set theory and effective RDBMS design supports queries based on
the relational algebra. However, although relational design concepts are well understood, adherence to good
database design patterns is not enforced in the industry, nor arguably is it now even encouraged1. The primary
technique for achieving optimal relational design is normalisation14,15, although normalisation is often criticised for
unnecessary complexity8 particularly when regarding JOINs between tables43. A key assumption in the work on
JOIN optimisation is that query design is driven by the schema design; in other words, that queries are developed to
work with a given schema as efficiently as possible. This is not necessarily the case with SQL queries generated by
applications or through mapping; for example, the ‘N+1’ problem is endemic in topologies with dependent
relationships between entities (tables) and, where ORM-driven lazy loading is used, where data about the parent
entities is returned on a row-by-row rather than a set basis. This results in multiple queries where only a single one

262 Derek Colley et al. / Procedia Computer Science 121 (2017) 260–265
 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000 3

is needed, causing performance issues19. Object-relational modelling techniques are more susceptible to this and
other performance issues17,22, especially against heavily-normalised or complex schemata.

3.2. Query Execution Optimisation

Query execution is a well-established process in RDBMSs39 and in implementation, is handled by the cost-based
optimizer (CBO) which has replaced rule-based optimisation12. Cost-based optimisation techniques attempt to
reduce the cost of a query (measured by a variety of factors including time taken to execute; page accesses;
selectivity factors; cardinality estimates; data density and more) by choosing the least costly plan2 typically using
heuristics or timeout parameters as a stop condition21,35. One limitation of the CBO is that cardinality is a principal
factor in calculating the costs of a plan, since the number of rows is normally in direct proportion to the disk
accesses required or the size of the dataset returned34. However, when multiple attributes are involved in a query,
attribute-value independence (AVI) becomes a problem since the cardinality error multiplies proportionally to the
number of attributes involved18 and the intermediate relations13. The limitations of the CBO include difficulty in
handling object-oriented features23 and difficulties with nested queries. Wu et al44 investigated whether cost-based
optimiser models were now unusable due to query complexity. In the context of automatically generated queries
which originate from ORM frameworks, the cost-based optimizer can struggle to efficiently analyse these complex
queries and produce a viable plan, leading to problems such as sub-standard plan output caused by timeout
conditions; plans which are not optimised for the parameterised inputs and plans that use inefficient JOIN
mechanisms or poorly-performing scan operations as selection of the correct indexes could not take place.

Indexing is used to reduce the computational and I/O subsystem loads when fetching data20,40. The limitations of

indexes in a traditional relational environment include performance penalties on write-heavy tables16 and the
overhead of indexes themselves38. Poor query design can mean that the RDBMS engine cannot apply indexes
accurately, meaning that indexing can become inefficient – for example, if a query selects a column which is not
present in the definition of the best-fit index, then additional row-by-row lookups may be required back to the base
data to fetch the columnar values31. When selecting large quantities of rows using this technique, for example by the
ORM method of ‘eager fetching’, this strategy can cause performance delays. In addition to indexing, there are a
range of other strategies including partitioning27; load balancing3; and varying transaction isolation levels21,30. As
with performance tuning based on efficient design, the underpinning assumption is that optimisation strategies
implemented at database level will be used in queries developed at application level and that the query design is
based on an understanding of relational optimisation techniques, which, as already noted, is not necessarily the case
for queries automatically generated by object-relational mapping. As discussed, this mismatch of priorities causes
performance issues, and could be addressed by the implementation of more adaptable methods of performance
optimisation within the RDBMS rather than focused on inbound queries.

3.3. SQL Query Design

SQL has been described as an “elephant on clay feet”1 for various reasons, including the necessary expansion of
SQL to include object support (such as the support for user-defined types) but SQL syntax is well understood
despite the expansion of the standard. There are a range of heuristics and techniques for optimal query design
including sort tuning and the use of aggregations6,7; views28; cache management11,42 ;use of set-based logic, not
iterative logic; parallelism26; and the correct use of data typing. JOIN performance is a particularly important aspect
as intrinsic performance issues caused by attribute-value independence, increased and varied storage reads and
limitations in the generation of good-quality execution plans can have a major impact on query execution time.
RDBMSs support a range of different types of joins and optimisation of JOIN performance is a continuing theme in
the relational database literature4,5,9,10,33, remaining a current research area3,27,32. In conventional database

4 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

development, poor JOIN performance can result from many causes including over-normalisation21; inefficient JOIN
type selection; data skew25; or external factors such as network performance37 and processor architecture24. Given
the increasing complexity of queries that may be generated from ORM frameworks, the impact of poor JOIN
performance becomes more evident. In the context of ORM generated queries, one key element in any future
relational database performance optimisation framework must be the implementation of contextually-correct JOINs
and the de-normalisation of overly-normalised schemas.

Nested queries are also an issue. Queries generated by object-relational modelling tools can produce queries with

multiple levels of nesting and large numbers of base tables, increasing the number of relations from which to extract
data and increasing the query execution load through additional operations on the data (filtering and sorting). Other
related reasons for poor database performance arising from ORM include pre-fetching rows before filtering; the
aforementioned ‘N+1’ problem; fetching columns where not specified in the query, which will cause scans rather
than index seeks and consequently greater I/O consumption; poor data typing; and for RDBMS systems with plan
caches, excessive bloating of the cache through the generation of single-use plans19,29,31.

4. Existing Performance Tuning Approaches: Limitations and Research Directions

Current performance tuning approaches appear to be generally schema-centred. Although queries can be
refactored or limited in scope to decrease complexity, auxiliary structures to the schemas like indexes assist in
efficiently searching the schemas; the cost-based optimiser uses trial-and-error to find better execution plans;
techniques such as views abstract the schema objects; other approaches like partitioning focus on vertically or
horizontally splitting the data within the schema objects. However, these approaches are tied to the existing
structure of the schema and are static in nature. Schemas are generally fixed as changes to relations (for example,
re-typing, re-definition of functional dependencies or adding or subtracting columns) have subsequent effects on
other database objects; another way of stating this would be to say that tables and the objects that make up a table
are closely coupled, implying brittleness, with an increased effort and risk associated with changes. With
application development methodologies now iterative and techniques such as continuous integration commonplace,
we have observed and can continue to expect continuing disruption to the traditional relational model.

We argue that a more intelligent, agile, dynamic query-driven approach is required to adapt to the challenges of

changing query patterns. Trummer and Koch41 arguably signal a move towards intelligent optimisation by showing
how multiple factors can be used to influence the optimisation process. There have been numerous other research
contributions towards a new kind of query optimisation, for example optimising for multi-core environments26 and
adaptive (dynamic) partitioning strategies27. Another avenue for investigation is to use a machine-learning led
approach to categorise inbound queries in such a way that alternative versions of a schema can be used depending
on the properties of a query, an approach we term ‘dynamic schema redefinition’ and which is a focus of our
ongoing research. Another potential solution might be the examination of the data and the automatic aggregation,
categorisation, partitioning, indexing or archiving of the data depending on both the static properties (length, type
etc.) and the temporal properties (value over time, accuracy, velocity and so on). The key limitation to overcome is
the inflexibility of relational schemas to respond to variable workloads.

5. Conclusions and Future Work

Since the inception of the relational model, there have been few significant changes to fundamental concepts. The
ubiquity of relational database systems produced a comprehensive set of strategies and techniques to optimise query
performance, but, as the discussion in this paper shows, these strategies and techniques are schema-oriented in that
they rely for their effectiveness on queries being designed to fit the database, for example, by structuring the query

 Derek Colley et al. / Procedia Computer Science 121 (2017) 260–265 263
 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000 3

is needed, causing performance issues19. Object-relational modelling techniques are more susceptible to this and
other performance issues17,22, especially against heavily-normalised or complex schemata.

3.2. Query Execution Optimisation

Query execution is a well-established process in RDBMSs39 and in implementation, is handled by the cost-based
optimizer (CBO) which has replaced rule-based optimisation12. Cost-based optimisation techniques attempt to
reduce the cost of a query (measured by a variety of factors including time taken to execute; page accesses;
selectivity factors; cardinality estimates; data density and more) by choosing the least costly plan2 typically using
heuristics or timeout parameters as a stop condition21,35. One limitation of the CBO is that cardinality is a principal
factor in calculating the costs of a plan, since the number of rows is normally in direct proportion to the disk
accesses required or the size of the dataset returned34. However, when multiple attributes are involved in a query,
attribute-value independence (AVI) becomes a problem since the cardinality error multiplies proportionally to the
number of attributes involved18 and the intermediate relations13. The limitations of the CBO include difficulty in
handling object-oriented features23 and difficulties with nested queries. Wu et al44 investigated whether cost-based
optimiser models were now unusable due to query complexity. In the context of automatically generated queries
which originate from ORM frameworks, the cost-based optimizer can struggle to efficiently analyse these complex
queries and produce a viable plan, leading to problems such as sub-standard plan output caused by timeout
conditions; plans which are not optimised for the parameterised inputs and plans that use inefficient JOIN
mechanisms or poorly-performing scan operations as selection of the correct indexes could not take place.

Indexing is used to reduce the computational and I/O subsystem loads when fetching data20,40. The limitations of

indexes in a traditional relational environment include performance penalties on write-heavy tables16 and the
overhead of indexes themselves38. Poor query design can mean that the RDBMS engine cannot apply indexes
accurately, meaning that indexing can become inefficient – for example, if a query selects a column which is not
present in the definition of the best-fit index, then additional row-by-row lookups may be required back to the base
data to fetch the columnar values31. When selecting large quantities of rows using this technique, for example by the
ORM method of ‘eager fetching’, this strategy can cause performance delays. In addition to indexing, there are a
range of other strategies including partitioning27; load balancing3; and varying transaction isolation levels21,30. As
with performance tuning based on efficient design, the underpinning assumption is that optimisation strategies
implemented at database level will be used in queries developed at application level and that the query design is
based on an understanding of relational optimisation techniques, which, as already noted, is not necessarily the case
for queries automatically generated by object-relational mapping. As discussed, this mismatch of priorities causes
performance issues, and could be addressed by the implementation of more adaptable methods of performance
optimisation within the RDBMS rather than focused on inbound queries.

3.3. SQL Query Design

SQL has been described as an “elephant on clay feet”1 for various reasons, including the necessary expansion of
SQL to include object support (such as the support for user-defined types) but SQL syntax is well understood
despite the expansion of the standard. There are a range of heuristics and techniques for optimal query design
including sort tuning and the use of aggregations6,7; views28; cache management11,42 ;use of set-based logic, not
iterative logic; parallelism26; and the correct use of data typing. JOIN performance is a particularly important aspect
as intrinsic performance issues caused by attribute-value independence, increased and varied storage reads and
limitations in the generation of good-quality execution plans can have a major impact on query execution time.
RDBMSs support a range of different types of joins and optimisation of JOIN performance is a continuing theme in
the relational database literature4,5,9,10,33, remaining a current research area3,27,32. In conventional database

4 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

development, poor JOIN performance can result from many causes including over-normalisation21; inefficient JOIN
type selection; data skew25; or external factors such as network performance37 and processor architecture24. Given
the increasing complexity of queries that may be generated from ORM frameworks, the impact of poor JOIN
performance becomes more evident. In the context of ORM generated queries, one key element in any future
relational database performance optimisation framework must be the implementation of contextually-correct JOINs
and the de-normalisation of overly-normalised schemas.

Nested queries are also an issue. Queries generated by object-relational modelling tools can produce queries with

multiple levels of nesting and large numbers of base tables, increasing the number of relations from which to extract
data and increasing the query execution load through additional operations on the data (filtering and sorting). Other
related reasons for poor database performance arising from ORM include pre-fetching rows before filtering; the
aforementioned ‘N+1’ problem; fetching columns where not specified in the query, which will cause scans rather
than index seeks and consequently greater I/O consumption; poor data typing; and for RDBMS systems with plan
caches, excessive bloating of the cache through the generation of single-use plans19,29,31.

4. Existing Performance Tuning Approaches: Limitations and Research Directions

Current performance tuning approaches appear to be generally schema-centred. Although queries can be
refactored or limited in scope to decrease complexity, auxiliary structures to the schemas like indexes assist in
efficiently searching the schemas; the cost-based optimiser uses trial-and-error to find better execution plans;
techniques such as views abstract the schema objects; other approaches like partitioning focus on vertically or
horizontally splitting the data within the schema objects. However, these approaches are tied to the existing
structure of the schema and are static in nature. Schemas are generally fixed as changes to relations (for example,
re-typing, re-definition of functional dependencies or adding or subtracting columns) have subsequent effects on
other database objects; another way of stating this would be to say that tables and the objects that make up a table
are closely coupled, implying brittleness, with an increased effort and risk associated with changes. With
application development methodologies now iterative and techniques such as continuous integration commonplace,
we have observed and can continue to expect continuing disruption to the traditional relational model.

We argue that a more intelligent, agile, dynamic query-driven approach is required to adapt to the challenges of

changing query patterns. Trummer and Koch41 arguably signal a move towards intelligent optimisation by showing
how multiple factors can be used to influence the optimisation process. There have been numerous other research
contributions towards a new kind of query optimisation, for example optimising for multi-core environments26 and
adaptive (dynamic) partitioning strategies27. Another avenue for investigation is to use a machine-learning led
approach to categorise inbound queries in such a way that alternative versions of a schema can be used depending
on the properties of a query, an approach we term ‘dynamic schema redefinition’ and which is a focus of our
ongoing research. Another potential solution might be the examination of the data and the automatic aggregation,
categorisation, partitioning, indexing or archiving of the data depending on both the static properties (length, type
etc.) and the temporal properties (value over time, accuracy, velocity and so on). The key limitation to overcome is
the inflexibility of relational schemas to respond to variable workloads.

5. Conclusions and Future Work

Since the inception of the relational model, there have been few significant changes to fundamental concepts. The
ubiquity of relational database systems produced a comprehensive set of strategies and techniques to optimise query
performance, but, as the discussion in this paper shows, these strategies and techniques are schema-oriented in that
they rely for their effectiveness on queries being designed to fit the database, for example, by structuring the query

264 Derek Colley et al. / Procedia Computer Science 121 (2017) 260–265
 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000 5

to be accessible to the CBO. The rise of model-driven queries presents new challenges for relational query
optimisation, identifying the need for revisions to the CBO and novel approaches, such as dynamic schema
redefinition, or augmentation of the CBO with novel and dynamic techniques, in response to changing inbound
query patterns. It is intended these approaches will be the underpinnings of our future research in this area, and
these new approaches in the relational space would improve relational query performance for model-generated
queries and further address the object-relational impedance mismatch problem.

References

1. Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L. and Torlone, R., 2013. The relational model is dead, SQL is dead, and I don't feel so good
myself. ACM SIGMOD Record, 42(2), pp.64-68.

2. Babcock, B. and Chaudhuri, S., 2005, June. Towards a robust query optimizer: a principled and practical approach. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data (pp. 119-130). ACM.

3. Barthels, C., Müller, I., Schneider, T., Alonso, G. and Hoefler, T., 2017. Distributed Join Algorithms on Thousands of Cores. Proceedings of
the VLDB Endowment, 10(5).

4. Begley, S., He, Z. and Chen, Y.P.P., 2016. PaMeCo join: A parallel main memory compact hash join. Information Systems, 58, pp.105-125.
5. Blanas, S., Li, Y. and Patel, J.M., 2011, June. Design and evaluation of main memory hash join algorithms for multi-core CPUs. In

Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (pp. 37-48). ACM.
6. Borodin, A., Kiselev, Y., Mirvoda, S. and Porshnev, S., 2016, November. Development of data aggregation capabilities in domain-specific

query language for metallurgy. In Dynamics of Systems, Mechanisms and Machines (Dynamics), 2016 (pp. 1-6). IEEE.
7. Bose, A., Smadi, M.M., Sun, J. and Velpuri, C.K., International Business Machines Corporation, 2016. Dynamic data aggregation from a

plurality of data sources. U.S. Patent 9,292,575.
8. Buelow, R. "The Folklore of Normalization." Journal of Database Management, vol. 11, no. 3, 2000, p. 37.
9. Chen, M. and Zhong, Z., 2014, December. Block Nested Join and Sort Merge Join Algorithms: An Empirical Evaluation. In International

Conference on Advanced Data Mining and Applications (pp. 705-715). Springer International Publishing.
10. Chen, S., Ailamaki, A., Gibbons, P.B. and Mowry, T.C., 2007. Improving hash Join performance through prefetching. ACM Transactions on

Database Systems (TODS), 32(3), p.17.
11. Chen, T.H., Shang, W., Hassan, A.E., Nasser, M. and Flora, P., 2016, November. CacheOptimizer: Helping developers configure caching

frameworks for Hibernate-based database-centric web applications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 666-677). ACM.

12. Cherniack, M. and Zdonik, S., 1998, June. Changing the rules: Transformations for rule-based optimizers. In ACM SIGMOD Record (Vol.
27, No. 2, pp. 61-72). ACM.

13. Christodoulakis, Stavros. "Implications of certain assumptions in database performance evaluation." ACM Transactions on Database Systems
(TODS) 9.2 (1984): 163-186.

14. Codd, E. F. "Recent Investigations into Relational Data Base Systems". IBM Research Report RJ 1385 (April 23, 1974). Republished in Proc.
1974 Congress (Stockholm, Sweden, 1974). , N.Y.: North-Holland (1974).

15. Codd, E.F. "Further Normalization of the Data Base Relational Model". (Presented at Courant Computer Science Symposia Series 6, "Data
Base Systems", New York City, May 24–25, 1971.) IBM Research Report RJ909 (August 31, 1971). Republished in Randall J. Rustin (ed.),
Data Base Systems: Courant Computer Science Symposia Series 6. Prentice-Hall, 1972.

16. Davidson, L., Ford, T. and Berry, G., 2010. Performance Tuning Using SQL Server Dynamic Management Views. Simple Talk Pub.
17. Emmett, B. 2017. Simple Talk. [ONLINE] Available at: https://www.simple-talk.com/dotnet/net-tools/entity-framework-performance-and-

what-you-can-do-about-it/. [Accessed 11 July 2017].
18. Faloutsos, C. and Kamel, I. Relaxing the uniformity and independence assumptions using the concept of fractal dimensions. Journal of

Computer and System Sciences, 55(2):229–240, 1997.
19. Fink, G.. 2017. Microsoft: Select N+1 Problem: How to Decrease Your ORM Performance. [ONLINE] Available at:

http://blogs.microsoft.co.il/gilf/2010/08/18/select-n1-problem-how-to-decrease-your-orm-performance/. [Accessed 11 July
2017].

20. Foster, E.C. and Godbole, S., 2016. Review of Trees. In Database Systems (pp. 471-504). Apress.
21. Fritchey, G. and Dam, S., 2013. SQL Server 2012 Query Performance Tuning. Apress.
22. Fritchey, G.. 2017. I Love Entity Framework. [ONLINE] Available at: http://www.scarydba.com/2017/07/05/love-entity-framework/.

[Accessed 11 July 2017].
23. Kabra, N. and DeWitt, D.J., 1998, June. Efficient mid-query re-optimization of sub-optimal query execution plans. In ACM SIGMOD Record

(Vol. 27, No. 2, pp. 106-117). ACM.
24. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N., Chhugani, J., Di Blas, A. and Dubey, P., 2009. Sort vs. Hash

revisited: fast Join implementation on modern multi-core CPUs. Proceedings of the VLDB Endowment, 2(2), pp.1378-1389.

6 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

25. Lakshmi, M.S. and Yu, P.S., 2000, January. Effect of skew on Join performance in parallel architectures. In Proceedings of the first
international symposium on Databases in parallel and distributed systems (pp. 107-120). IEEE Computer Society Press.

26. Leis, V., Boncz, P., Kemper, A. and Neumann, T., 2014, June. Morsel-driven parallelism: a NUMA-aware query evaluation framework for
the many-core age. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data (pp. 743-754). ACM.

27. Lu, Y., Shanbhag, A., Jindal, A. and Madden, S., 2017. AdaptDB: adaptive partitioning for distributed Joins. Proceedings of the VLDB
Endowment, 10(5), pp.589-600.

28. Masunaga, Y., 2017, January. An intention-based approach to the updatability of views in relational databases. In Proceedings of the 11th
International Conference on Ubiquitous Information Management and Communication (p. 13). ACM.

29. Microsoft Corporation. 2015. Performance Considerations (Entity Framework). [ONLINE] Available at: https://msdn.microsoft.com/en-
us/library/cc853327(v=vs.110).aspx. [Accessed 29 March 2017].

30. Microsoft Corporation. 2017. Advanced Query Tuning Concepts. [ONLINE] Available at: https://technet.microsoft.com/en-
us/library/ms191426(v=sql.105).aspx. [Accessed 29 March 2017].

31. Microsoft Corporation. 2017. SQL Server Index Design Guide. [ONLINE] Available at: https://technet.microsoft.com/en-
us/library/jj835095(v=sql.110).aspx. [Accessed 11 July 2017].

32. Mirzadeh, N., Koçberber, Y.O., Falsafi, B. and Grot, B., 2015. Sort vs. hash Join revisited for near-memory execution. In 5th Workshop on
Architectures and Systems for Big Data (ASBD 2015) (No. EPFL-TALK-209111).

33. Mishra, P. and Eich, M.H., 1992. Join processing in relational databases. ACM Computing Surveys (CSUR), 24(1), pp.63 113.
34. Oommen, B.J. and Thiyagarajah, M., 2005. Method of generating attribute cardinality maps. U.S. Patent 6,865,567. [ONLINE] Available at:

https://www.google.com/patents/US6865567 [Accessed 01 March 2017]
35. Oracle Corporation (2017) Oracle Database Performance Method. [ONLINE] Available at:

https://docs.oracle.com/cd/E11882_01/server.112/e10822/tdppt_method.htm#TDPPT006 [Accessed: 01/03/2017].
36. Pane, A., Goldy, N., Madoery, F., Kira, E., Reynares, E. and Caliusco, L., 2017. From Relational to a Column-based Database: A quasi-

experiment. Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, 1(6).
37. Perrizo, W., Ram, P. and Wenberg, D., 1994. Distributed Join processing performance evaluation. In 1994 Proceedings of the Twenty-

Seventh Hawaii International Conference on System Sciences.
38. Randal, P. 2015. On index key size, index depth and performance. [ONLINE] Available at: https://www.sqlskills.com/blogs/paul/on-index-

key-size-index-depth-and-performance/. [Accessed 28 March 2017].
39. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A. and Price, T.G., 1979, May. Access path selection in a relational database

management system. In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data (pp. 23-34). ACM.
40. Shahvarani, A. and Jacobsen, H.A., 2016, June. A hybrid b+-tree as solution for in-memory indexing on CPU-GPU heterogeneous computing

platforms. In Proceedings of the 2016 International Conference on Management of Data (pp. 1523-1538). ACM.
41. Trummer, I. and Koch, C., 2017. Multi-objective parametric query optimization. The VLDB Journal—The International Journal on Very

Large Data Bases, 26(1), pp.107-124.
42. Welborne, C.R., de Voogt, D. and Eatough, M., 2016. An analysis of database caching policies. Journal of Computing Sciences in Colleges,

32(2), pp.4-10.
43. Westland, J.C., 1992. Economic incentives for database normalization. Information processing & management, 28(5), pp.647-662.
44. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H. and Naughton, J.F., 2013, April. Predicting query execution time: Are optimizer cost

models really unusable?. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on (pp. 1081-1092). IEEE.

 Derek Colley et al. / Procedia Computer Science 121 (2017) 260–265 265
 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000 5

to be accessible to the CBO. The rise of model-driven queries presents new challenges for relational query
optimisation, identifying the need for revisions to the CBO and novel approaches, such as dynamic schema
redefinition, or augmentation of the CBO with novel and dynamic techniques, in response to changing inbound
query patterns. It is intended these approaches will be the underpinnings of our future research in this area, and
these new approaches in the relational space would improve relational query performance for model-generated
queries and further address the object-relational impedance mismatch problem.

References

1. Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L. and Torlone, R., 2013. The relational model is dead, SQL is dead, and I don't feel so good
myself. ACM SIGMOD Record, 42(2), pp.64-68.

2. Babcock, B. and Chaudhuri, S., 2005, June. Towards a robust query optimizer: a principled and practical approach. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data (pp. 119-130). ACM.

3. Barthels, C., Müller, I., Schneider, T., Alonso, G. and Hoefler, T., 2017. Distributed Join Algorithms on Thousands of Cores. Proceedings of
the VLDB Endowment, 10(5).

4. Begley, S., He, Z. and Chen, Y.P.P., 2016. PaMeCo join: A parallel main memory compact hash join. Information Systems, 58, pp.105-125.
5. Blanas, S., Li, Y. and Patel, J.M., 2011, June. Design and evaluation of main memory hash join algorithms for multi-core CPUs. In

Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (pp. 37-48). ACM.
6. Borodin, A., Kiselev, Y., Mirvoda, S. and Porshnev, S., 2016, November. Development of data aggregation capabilities in domain-specific

query language for metallurgy. In Dynamics of Systems, Mechanisms and Machines (Dynamics), 2016 (pp. 1-6). IEEE.
7. Bose, A., Smadi, M.M., Sun, J. and Velpuri, C.K., International Business Machines Corporation, 2016. Dynamic data aggregation from a

plurality of data sources. U.S. Patent 9,292,575.
8. Buelow, R. "The Folklore of Normalization." Journal of Database Management, vol. 11, no. 3, 2000, p. 37.
9. Chen, M. and Zhong, Z., 2014, December. Block Nested Join and Sort Merge Join Algorithms: An Empirical Evaluation. In International

Conference on Advanced Data Mining and Applications (pp. 705-715). Springer International Publishing.
10. Chen, S., Ailamaki, A., Gibbons, P.B. and Mowry, T.C., 2007. Improving hash Join performance through prefetching. ACM Transactions on

Database Systems (TODS), 32(3), p.17.
11. Chen, T.H., Shang, W., Hassan, A.E., Nasser, M. and Flora, P., 2016, November. CacheOptimizer: Helping developers configure caching

frameworks for Hibernate-based database-centric web applications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 666-677). ACM.

12. Cherniack, M. and Zdonik, S., 1998, June. Changing the rules: Transformations for rule-based optimizers. In ACM SIGMOD Record (Vol.
27, No. 2, pp. 61-72). ACM.

13. Christodoulakis, Stavros. "Implications of certain assumptions in database performance evaluation." ACM Transactions on Database Systems
(TODS) 9.2 (1984): 163-186.

14. Codd, E. F. "Recent Investigations into Relational Data Base Systems". IBM Research Report RJ 1385 (April 23, 1974). Republished in Proc.
1974 Congress (Stockholm, Sweden, 1974). , N.Y.: North-Holland (1974).

15. Codd, E.F. "Further Normalization of the Data Base Relational Model". (Presented at Courant Computer Science Symposia Series 6, "Data
Base Systems", New York City, May 24–25, 1971.) IBM Research Report RJ909 (August 31, 1971). Republished in Randall J. Rustin (ed.),
Data Base Systems: Courant Computer Science Symposia Series 6. Prentice-Hall, 1972.

16. Davidson, L., Ford, T. and Berry, G., 2010. Performance Tuning Using SQL Server Dynamic Management Views. Simple Talk Pub.
17. Emmett, B. 2017. Simple Talk. [ONLINE] Available at: https://www.simple-talk.com/dotnet/net-tools/entity-framework-performance-and-

what-you-can-do-about-it/. [Accessed 11 July 2017].
18. Faloutsos, C. and Kamel, I. Relaxing the uniformity and independence assumptions using the concept of fractal dimensions. Journal of

Computer and System Sciences, 55(2):229–240, 1997.
19. Fink, G.. 2017. Microsoft: Select N+1 Problem: How to Decrease Your ORM Performance. [ONLINE] Available at:

http://blogs.microsoft.co.il/gilf/2010/08/18/select-n1-problem-how-to-decrease-your-orm-performance/. [Accessed 11 July
2017].

20. Foster, E.C. and Godbole, S., 2016. Review of Trees. In Database Systems (pp. 471-504). Apress.
21. Fritchey, G. and Dam, S., 2013. SQL Server 2012 Query Performance Tuning. Apress.
22. Fritchey, G.. 2017. I Love Entity Framework. [ONLINE] Available at: http://www.scarydba.com/2017/07/05/love-entity-framework/.

[Accessed 11 July 2017].
23. Kabra, N. and DeWitt, D.J., 1998, June. Efficient mid-query re-optimization of sub-optimal query execution plans. In ACM SIGMOD Record

(Vol. 27, No. 2, pp. 106-117). ACM.
24. Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N., Chhugani, J., Di Blas, A. and Dubey, P., 2009. Sort vs. Hash

revisited: fast Join implementation on modern multi-core CPUs. Proceedings of the VLDB Endowment, 2(2), pp.1378-1389.

6 Derek Colley and Dr. Clare Stanier / Procedia Computer Science 00 (2017) 000–000

25. Lakshmi, M.S. and Yu, P.S., 2000, January. Effect of skew on Join performance in parallel architectures. In Proceedings of the first
international symposium on Databases in parallel and distributed systems (pp. 107-120). IEEE Computer Society Press.

26. Leis, V., Boncz, P., Kemper, A. and Neumann, T., 2014, June. Morsel-driven parallelism: a NUMA-aware query evaluation framework for
the many-core age. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data (pp. 743-754). ACM.

27. Lu, Y., Shanbhag, A., Jindal, A. and Madden, S., 2017. AdaptDB: adaptive partitioning for distributed Joins. Proceedings of the VLDB
Endowment, 10(5), pp.589-600.

28. Masunaga, Y., 2017, January. An intention-based approach to the updatability of views in relational databases. In Proceedings of the 11th
International Conference on Ubiquitous Information Management and Communication (p. 13). ACM.

29. Microsoft Corporation. 2015. Performance Considerations (Entity Framework). [ONLINE] Available at: https://msdn.microsoft.com/en-
us/library/cc853327(v=vs.110).aspx. [Accessed 29 March 2017].

30. Microsoft Corporation. 2017. Advanced Query Tuning Concepts. [ONLINE] Available at: https://technet.microsoft.com/en-
us/library/ms191426(v=sql.105).aspx. [Accessed 29 March 2017].

31. Microsoft Corporation. 2017. SQL Server Index Design Guide. [ONLINE] Available at: https://technet.microsoft.com/en-
us/library/jj835095(v=sql.110).aspx. [Accessed 11 July 2017].

32. Mirzadeh, N., Koçberber, Y.O., Falsafi, B. and Grot, B., 2015. Sort vs. hash Join revisited for near-memory execution. In 5th Workshop on
Architectures and Systems for Big Data (ASBD 2015) (No. EPFL-TALK-209111).

33. Mishra, P. and Eich, M.H., 1992. Join processing in relational databases. ACM Computing Surveys (CSUR), 24(1), pp.63 113.
34. Oommen, B.J. and Thiyagarajah, M., 2005. Method of generating attribute cardinality maps. U.S. Patent 6,865,567. [ONLINE] Available at:

https://www.google.com/patents/US6865567 [Accessed 01 March 2017]
35. Oracle Corporation (2017) Oracle Database Performance Method. [ONLINE] Available at:

https://docs.oracle.com/cd/E11882_01/server.112/e10822/tdppt_method.htm#TDPPT006 [Accessed: 01/03/2017].
36. Pane, A., Goldy, N., Madoery, F., Kira, E., Reynares, E. and Caliusco, L., 2017. From Relational to a Column-based Database: A quasi-

experiment. Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, 1(6).
37. Perrizo, W., Ram, P. and Wenberg, D., 1994. Distributed Join processing performance evaluation. In 1994 Proceedings of the Twenty-

Seventh Hawaii International Conference on System Sciences.
38. Randal, P. 2015. On index key size, index depth and performance. [ONLINE] Available at: https://www.sqlskills.com/blogs/paul/on-index-

key-size-index-depth-and-performance/. [Accessed 28 March 2017].
39. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A. and Price, T.G., 1979, May. Access path selection in a relational database

management system. In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data (pp. 23-34). ACM.
40. Shahvarani, A. and Jacobsen, H.A., 2016, June. A hybrid b+-tree as solution for in-memory indexing on CPU-GPU heterogeneous computing

platforms. In Proceedings of the 2016 International Conference on Management of Data (pp. 1523-1538). ACM.
41. Trummer, I. and Koch, C., 2017. Multi-objective parametric query optimization. The VLDB Journal—The International Journal on Very

Large Data Bases, 26(1), pp.107-124.
42. Welborne, C.R., de Voogt, D. and Eatough, M., 2016. An analysis of database caching policies. Journal of Computing Sciences in Colleges,

32(2), pp.4-10.
43. Westland, J.C., 1992. Economic incentives for database normalization. Information processing & management, 28(5), pp.647-662.
44. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H. and Naughton, J.F., 2013, April. Predicting query execution time: Are optimizer cost

models really unusable?. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on (pp. 1081-1092). IEEE.

